可溶有机半导体材料的自旋电子学研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:zibzibzib
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
可溶有机半导体材料是当今有机电子学领域发展的主要研究方向,基于该材料制备可室温工作的自旋器件是有机自旋电子学研究中的重要内容和发展趋势,目前已经引起了世界范围内科研工作者的密切关注。该目标的实现与有机自旋阀器件的可信制备、自旋注入效率的提升、有机半导体层自旋输运性质的优化密切相关。本论文首先通过设备优化改造有效避免了有机层被顶电极穿透的问题,又通过界面层优化提高了器件自旋注入效率,最后通过对可溶有机半导体材料PCE10和PC71BM的溶剂筛选、退火条件优化等手段,成功制备了可室温工作的有机自旋阀器件,并对其室温自旋输运性能和自旋光伏效应进行了系统研究。此外,针对目前自旋阀器件制备对设备依赖严重的现状,我们还开发了一种更为简便的、具有普遍适用性的自旋器件制备工艺。本论文研究工作主要包括以下四个方面:(1)低温速控顶电极沉积技术开发与自旋注入界面层优化。通过将传统电子束蒸镀设备中的基片台置换为液氮旋转台,开发了一种低温速控顶电极沉积技术,有效地避免了器件制备过程中有机层被顶电极穿透的问题;通过对界面注入层半氧化金属铝(leaky-Al Ox)的厚度和氧化条件的调整优化,有效地提高了器件自旋注入效率。上述两项工作为溶液法制备可室温工作有机自旋阀器件奠定了重要基础。(2)构建基于P型半导体的室温自旋阀器件。基于上述工艺条件开发,通过溶剂选择、热退火条件优化,首次成功地通过溶液法制备了基于P型聚合物半导体材料PCE10的自旋阀器件,该器件的室温自旋阀效应高达4.7%,自旋极化空穴的室温输运距离大于37 nm。(3)构建基于N型半导体的室温自旋光伏器件。首次通过溶液法成功地制备了基于N型小分子半导体材料PC71BM的可室温工作自旋光伏器件,自旋极化电子室温输运距离高于55 nm。通过调控PC71BM半导体层膜厚,可获得兼具自旋阀效应和强光伏效应的自旋器件。在这一器件中,通过调控光强和外加偏压可实现室温条件下器件输出电流由正值到负值的可控输出、完全自旋极化电流的可控输出以及趋于无穷大的磁电流响应等全新器件功能。(4)开发自旋器件制备的新工艺。利用聚苯乙烯溶液在十八烷基三氯硅烷自组装单分子层上铺展成膜和聚苯乙烯薄膜与该自组装薄膜的不粘特性,开发了聚合物基顶电极转移法用于制备有机自旋阀器件。该方法可隔绝水、氧,不受设备限制、操作简便且具有普遍的适用性。通过器件截面透射电镜图、面分布能谱图以及高达4.5%的室温自旋阀效应表征证明了该方法制备自旋阀器件的可信性。
其他文献
丛式井可以有效地提高油田最终采收率并保证单井原油产量,磁定位钻井技术是丛式井精细控制技术之一,而邻井间距离的定位又是丛式井精细控制技术的核心。目前,我国尚未有自主研发、技术完善的丛式井磁定位技术应用于其邻井防碰测距领域,而国外已经研发出相应的测控仪器并应用于实际钻井工程。本文在深入分析现有邻井间距磁定位技术原理及其优缺点的基础上,围绕主动型丛式井磁定位钻井防碰探测技术展开研究,针对海上钻井平台和陆
油气开采和输送过程中通常会存在CO2腐蚀和微生物腐蚀,能够促使碳钢管线发生极严重的均匀腐蚀和局部腐蚀,对油气的安全生产产生巨大的威胁。国内外已分别对CO2腐蚀和微生物腐蚀做了大量研究,并建立了相应的防控措施。但对于流体冲刷环境下,CO2腐蚀的腐蚀机制,以及在CO2腐蚀和微生物腐蚀共同发生时的控制方式还尚不完善。因此,本文在CO2冲刷腐蚀环境下进行了研究,首先研究了冲刷腐蚀的腐蚀机制,然后讨论了缓蚀
陆相坳陷型湖盆具有稳定的物源区,沉积储层厚度薄、平面展布范围广,受湖平面升降作用控制明显、储层非均质性强、岩性圈闭成因和分布复杂等特征,这些特征影响了岩性油气藏的勘探开发。如何建立大型坳陷型湖盆层序地层格架,确定层序格架下沉积体系及砂体的空间分布规律,明确不同成因岩性圈闭空间分布规律,成为突破坳陷型盆地规模型岩性油气藏勘探开发的重要问题。本论文基于大量岩心、露头、测井资料以及前人研究成果,综合研究
柴达木盆地是青藏高原唯一发现规模储量并建成大型油气田的陆相含油气盆地,但青藏高原隆升对柴达木盆地油气成藏的控制尚未开展深入分析。因此,研究青藏高原隆升与柴达木盆地油气成藏的关系具有重要的理论意义和勘探价值,不仅能够推动隆升控盆控藏新认识,丰富高原型盆地石油地质理论,而且有助于高原盆地的油气勘探。本文运用盆地分析、构造地质和石油地质方法,针对柴达木盆地形成和油气成藏方面的科学问题,总结成盆、成烃、成
中国油气短缺促使油气勘探不断向深层拓展,塔里木每年90%以上新增储量来自平均埋深超6000 m深层,已经发现的油气藏平均深度超过6043 m,在深层碳酸盐岩地层钻探了中国最深探井和发现了埋深最深油藏,分别超过8882 m和8408 m。国内外学者对于碎屑岩油气赋存下限研究比较深入,碳酸盐岩油气藏赋存下限研究相对薄弱。塔里木深层碳酸盐岩油气勘探实践显示,即便大于8000 m的探井仍然见到有较好的储层
波动方程反演充分利用地震波的运动学和动力学特征,是获取地下介质参数的重要手段之一。地震波全波形反演将模拟数据与实际观测数据进行最优匹配从而对地下介质参数进行建模。然而,由于反演问题解的不适定性以及反演问题的强非线性,通常需要对方程线性化以利求解,常规的正则化方法以牺牲精度换取稳定性,而且也并非总能得到数值稳定的解,因此,提高地震波全波形反演的精度仍具有重要的实际意义。本文从提高正反演结果精度的角度
随着工业智能化的持续深入,机械健康管理领域呈现出数据海量、特征高维和信息隐含等全新特点。传统的故障诊断模式依赖于信号处理技术和人工特征提取,无法满足大数据背景下海量多源异构监测数据的处理需求,迫切需要引入深度学习等大数据分析工具,革新现有诊断思路,进一步提升故障诊断的精确性、适应性、智能性和鲁棒性。因此,本文以油气行业动设备为研究对象,以深度网络为诊断工具,在敏感特征挖掘、跨工况诊断、背景噪声滤除
对气固两相交叉射流进行研究对工业生产和环境保护具有一定的指导意义。以往对气固两相交叉射流气相的模拟研究主要采用雷诺时均Navier-Stokes方法、大涡模拟、直接数值模拟等宏观方法。采用格子Boltzmann方法等介观方法模拟气相流动与传热可以加深对交叉射流机理的研究。格子Boltzmann方法具有物理背景清晰、易编程、边界处理简单、并行性好等优点,在模拟复杂流动方面具有一定优势。本文将耦合格子
燃气轮机压缩机组是天然气长输管道压气站内实现天然气增压以及长距离运输的核心设备。在实际运行条件下,天然气管道压力的降低或者温度的下降都会造成管道内液烃的析出,可能对燃气轮机压缩机组的安全、高效运行产生不利影响。当管道内有液烃存在时,部分液烃会随着天然气进入燃气轮机的燃烧室内,参与燃烧化学反应。在燃烧过程中,部分液烃会附着在喷嘴周围,导致喷嘴头部的烧蚀和积碳现象;另一部分液烃则随燃料气在燃烧室内完成
多载波调制(Multi-Carrier Modulation,MCM)技术因抗多径衰落能力强而被现代无线通信系统广泛接受,特别是其中正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)已经成为许多当代通信系统的标准波形。但OFDM无法满足所有未来通信应用场景的需求,而滤波器组多载波(Filter Bank Multicarrier,FBMC