基于赝火花放电的电子束表面改性技术研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:zhoupeng4348
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子束因其优越的性能在现代高能束技术中一直占有重要地位,被广泛应用于材料处理等领域。本论文研究的基于赝火花放电机制的高频脉冲电子束是高能束材料表面改性领域中的一种新方法。赝火花放电是基于真空环境的气体放电脉冲电子束源,具有工作气压低、能量转化率高、成本低和体积小等特点。其产生的电子束为束斑直径在毫米量级的微细高频脉冲电子束,具有高电流(几百安培至几千安培),短脉宽(几百纳秒至几微秒),高重复频率(几百赫兹至几千赫兹)和自聚焦(零点几毫米至几毫米)等特点,是一种具有极高加热率和冷却率的动态热源,这些特性使该项技术有望实现对复杂金属零件表面进行快速、高效、可控的精细表面改性。脉冲型电子束源的实质是时间尺度上的能量压缩,即在尽量短的时间内将储能元件的能量释放,以获得优于直流电子束的高功率密度。该电子束特有的能量分布的不均匀性也对该技术的机理研究和技术应用提出了很多限制和挑战。为了推广赝火花电子束表面改性方法,主要应集中解决以下三个方面的问题:理解赝火花电子束与材料作用的机理,建立电子束与材料作用的模型;构建实验平台;进行表面改性的原型实验。以上三点也是本论文研究工作的重点。本论文以赝火花电子束表面改性技术为主要研究目标,利用仿真和实验两方面手段进行了研究和探索。仿真方面,首先建立了基于蒙特卡罗粒子仿真方法的微观尺度模型,并结合材料的元素组成、密度、电子束的加速电场等一系列参数,实现了更接近物理机制的大数量电子与材料的碰撞和能量转换过程和材料表层不同深度下动态温度场的仿真计算,推导出了赝火花电子束双高斯体热源模型,计算结果证实了电子束能量和密度分布的不均匀性是引起电子束在材料表层的特殊熔融层结构的决定性因素。且脉冲型电子束特有的沿入射方向能量分布函数会随着电子束源端加速电场的不同而呈现不同形式,这种电子束入射方向分布函数的差异性直接导致了不同电子束加速电压下材料熔融层中熔池形状的区别,进而从物理本质上解释了金属材料在电子束的快速加热过程中特殊形貌及微观组织的形成原因和机制。通过与有限元仿真模型相结合,提出了电子束表面改性过程中温度场的建模与分析。该模型可以通过对加速电场、辐照时间、电子束辐照区重合率等外部工艺参数下的热影响层结构和表面形貌进行仿真计算,指导和加速后续实验的进程。在该模型的基础上,提出了电子束表面改性平台的初步参数和指标。用于表面改性的赝火花放电实验平台,首先要充分利用脉冲型电子束所具有的快速加热和冷却特点;其次为了获得最优的表面形貌,避免火山坑形貌和不规则起伏形貌的产生,实验系统要有合适的能量密度和加速电压;同时要有合理的动态温度场规划过程。以上述仿真和理论为依据,本研究设计了一套完整的赝火花电子束表面改性实验平台,实现了赝火花放电电子束金属表层处理的原型实验,验证了基于赝火花放电的电子束表面改性的可行性。赝火花电子束辐照AISI1045钢样品后,其耐腐蚀性能得到了显著提高,为了分析其性能提高的原因,进一步分析了其微观组织。赝火花电子束表面改性后可观察到由于电子束在辐照过程中对固定辐照区内极快的加热和冷却速度,避免了通常的奥氏体-马氏体转化过程,使得奥氏体能够在室温下稳定存在。并由于赝火花高频电子束中达到10~100 K/s的温度上升速率而产生了晶粒细化和非晶结构。表层形成的非晶层充当了钝化膜,从而提高了材料的耐腐蚀性能。
其他文献
目的:将扩散图像预处理(BO场强图矫正法和非线性配准矫正法)、扩散模型对比分析、临床应用三者结合。基于同一组非线性配准法矫正后健康成年人峰度图像,研究扩散张量成像(Diffusion Tensor imaging)、峰度成像(Diffusion Kurtosis imaging,DKI)和扩散基谱成像(Diffusion Basis Spectrum Imaging,DBSI)模型参数的相互关系和
研究目的:近年来越来越多的儿童慢性胰腺炎(Chronic Pancreatitis,CP)被诊断出来。儿童患者无论从病因构成、临床表现均可能和成人有所不同。尤其是对生长发育的影响,是儿童当中独特的表现。目前国内缺乏这方面的研究数据。国外的研究发现儿童慢性胰腺炎中很大一部分是由于基因突变所引起,基于种族、地域的差异,有必要对我国慢性胰腺炎患儿相应的临床特征、遗传基因进行研究。此外,而作为主要治疗手段
目的:光感受器细胞死亡是视网膜脱离(retinal detachment,RD)患者视功能损伤的主要原因。课题组前期研究提示光感受器细胞微环境损伤可能是导致其死亡的启动阶段。干预细胞膜表面的肾上腺素能受体(adrenergic receptor,AR)在新近研究中被发现具有神经细胞保护作用,提示AR可能是导致RD后微环境损伤与光感受器细胞死亡的上游调控机制。本研究首先探讨RD患者光感受器细胞微环境
凯瑟琳·贝尔西(1940-)是当代英国的一位文学和文化批评家。她的第一部专著《批评的实践》出版于1980年,在英国和西欧产生较大影响。此后她又出版九部专著和一本研究莎士比亚的论文集,逐步形成善用当代法国思想进行文学批评的特点。本论文以贝尔西的文学批评著作为研究对象,在梳理其文学批评发展轨迹的基础上,探讨其批评模式转向的问题,或者说“批评转向”的问题。本研究把论述建立在对当代西方文论发展史和贝尔西的
本实验室前期的蛋白组学结果提示血管组织内G蛋白偶联受体激酶(G-protein coupled receptor kinases,GRKs)表达水平受到力学刺激调控。GRKs是一类Ser/Thr蛋白激酶,其最初被发现的作用是磷酸化活化的G蛋白偶联受体(G-protein coupled receptors,GPCRs),使它们脱敏。近年来,GRKs表达水平和活性变化在与力学因素密切相关的高血压、动
行人重识别,是对摄像头网络(通常情况下,网络中的摄像头无视域重叠)中的行人进行身份(ID)关联(即将不同摄像头下的同一行人识别成相同ID)。它在智能安防、居家养老、智能交通管理和安全生产监管等领域有着非常重要的应用前景。由于摄像头视角、光照、行人姿态、随身携带的物品、以及相互遮挡等复杂场景条件变化,导致同一行人在不同摄像头下的图片,在视觉上呈现出明显差异。其中,光照条件变化主要导致行人图片在颜色域
声源定位技术是近年来国内外研究的一个热点,它涉及到声学、信号检测、数字信号处理等诸多技术领域,在军事、工业和民用领域有着重要的应用价值。声源定位技术一般借助于具有一定拓扑结构的传声器阵列来实现,声源定位的线索为接收信号间的到达时间差或幅值差。为了获得足够的声场信息,取得较高的定位精度,通常需要传声器阵列在保证一定阵元数目的同时具有比较大的阵元间距,这往往导致定位装置的整体尺寸比较庞大。而在一些特殊
视频中的人体姿势、动作识别是人类行为自动分析理解的基本任务。无论在运动还是静止情况下,获取人体信息都必需进行人体姿势、动作识别。随着机器学习的快速发展和深度学习技术的进步,尤其是用于特征提取、分类或回归的端到端深度神经网络结构,成为提高图像和视频中姿势估计和动作识别性能的关键。在本论文中,我们提出了使用深度卷积神经网络进行姿态估计和动作识别的新技术,这是一种专门为二维特征提取而设计的深度神经网络。
在过去几十年中,重味强子弱衰变在抽取标准模型的CKM参数、理解CP破坏机制、理解强相互作用动力学以及因子化定理中扮演了很重要的角色。然而这仅仅是利用了单重味介子或重子的弱衰变,我们期望双重味重子的弱衰变也可以提供同样重要的信息。2017年,LHCb合作组宣布在∧c+K-π+π+末态发现了双粲重子Ξcc++。接下来,实验家将研究Ξcc++的其它衰变模式和其它双重味重子。这样双重味重子弱衰变的理论研究