论文部分内容阅读
几类非线性微分方程的对称及解析解的研究
【机 构】
:
中国矿业大学
【出 处】
:
中国矿业大学
【发表日期】
:
2018年期
其他文献
辩证唯物主义认为,世界上一切事物都具有一定的质和量。质,总是具有一定量的质;量,也是具有一定质的量。事物的存在总是质和量的统一。没有量的质或没有质的量的事物,都是不存在的
本文考虑一类非线性泛函微分方程的非平凡周期解的存在性问题. 首先在第二章中研究具有单个时滞的非线性泛函微分方程的非平凡周期解的存在性问题.在第三章中研究具有k个时滞
本文讨论了Benjamin—Bona—Mahony—Burgers方程(简称为BBM—Burgers方程)的初值。
{ut—uxxt—uxx+(|u|σu)x=0 u(x,t)=u0(x) x∈R,t>0 x∈R解的局部存在性,整体存在性以
本文研究了超空间上弱半、弱连续的性质,获得了以下结果: 1(1)设(X,),(Y,)是拓扑空间,f:X→P_0(Y)是集值映射,则下列条件等价:(i)f是弱下半连续(ii)对A,f*(A)(f*(A))o(iii
纵观人类历史,传染病一直严重威胁着公众健康和社会发展.因此,研究疾病传播的动力学机制,进而制定控制疾病暴发的策略,就显得至关重要.在流行病学研究中,数学模型已经成为揭
在现实世界中,人们有时需要将自己的某些权利委托给可靠的代理人,由代理人代表本人行使这些权利,在这些可以委托的权利中包括人们的签名权利。在信息社会中也会遇到委托签名
基因逻辑网络是国际上引人注目的新兴领域,已经渗透到数理、生命、工程等众多领域。数据分析和理论方法成为理论生物学研究中探索生物机理的重要途径,也是人类认识自然科学世界
本文的主要目的是研究含有不连续非线性项的椭圆方程-Δu+λu=f(x,u)u,x∈RNU∈H1r(RN),λ>0(p)的正解的存在性.其中r=|x|,N≥3,H1r(RN)={u∈H1(RN)|(u(x)=u(|x|)},函数f(x,u):RN×R→R是
令E是严格凸空间,F是任意赋范线性空间。本文给出了l1(E)到F的单位球面之间的满等距映射V0的表现定理。在满足对任意i∈N,存在线性子空间Fi()F,使得V0(S(E)×ei)=S(Fi)的条件下,