论文部分内容阅读
集成电路中的信号延迟和串扰是制约微电子工业发展的重要因素。社会的发展和需求要求未来的电子器件具有更好的信号传输效率和更高的信号传播速度。印制电路板(PCB)作为集成电路中的重要组成部分,对电子信号的传播有着显著的影响。因此,选择具有低介电常数的树脂基体作为PCB基板材的胶粘剂对介电性能的提升有重要作用。双马来酰亚胺-三嗪树脂(BT树脂)因具有优异的介电性能和高耐热性等特点,近年来,其在介电通讯材料领域被广泛关注。然而,BT树脂的固化温度高、介电性能不突出却有限制它在未来电子通讯材料中的应用。因此,开发介电常数低、介电损耗低、固化温度低的新型BT树脂成为当前亟需解决的问题。本文通过在BT树脂体系中引入MOFs的孔隙结构、催化位点,制备了固化温度低和介电性能优良的BT树脂纳米复合材料。
本文合成了沸石咪唑型的锌基MOFs(ZIF-8)、氨基功能化的钛基MOFs(NH2-MIL-125)、氟功能化的锆基MOFs(F4-UiO-66)三种金属有机骨架,分别利用ZIF-8、NH2-MIL-125、F4-UiO-66改性BT树脂,并进一步研究了不同种类不同含量的MOFs对BT树脂体系的固化机理、热力学性能、介电性能及耐湿性能的影响。具体研究内容如下:
(1)分别采用回流法、溶剂热法成功制备了ZIF-8、NH2-MIL-125、F4-UiO-66。通过系列表征手段发现,ZIF-8具有正十二面体结晶形貌、高的比表面积(1509m2g-1)和微孔结构(1.0nm)。NH2-MIL-125晶体为正八面体,其比表面积和微孔孔径分别为1250m2g-1和0.66nm。与ZIF-8、NH2-MIL-125相比,F4-UiO-66的结构规整度不高,无明显结晶形貌,且比表面积低(282m2g-1),呈微孔/介孔(0.3~3.8nm)结构。ZIF-8、NH2-MIL-125具备较强的电子络合能力,而F4-UiO-66的电子络合效应不明显。
(2)利用ZIF-8改性双马来酰亚胺-三嗪树脂,制备了ZIF-8/BT纳米复合材料。研究结果表明,ZIF-8对BT树脂的固化过程有明显的催化作用。随着ZIF-8用量的增加,ZIF-8/BT共混物的固化温度不断降低。当ZIF-8的添加量达到0.5wt%时,ZIF-8/BT共混物的DSC曲线呈双峰,分别对应于氰酸酯的自聚以及氰酸酯与双马来酰亚胺的共聚,这是因为ZIF-8中的Zn2+和咪唑协同催化了氰酸酯的自聚,使其在低温发生,改变了BT树脂的固化历程。ZIF-8在BT树脂中分散均匀并具有一定增韧效果。加入ZIF-8后,因更多刚性的三嗪环的生成,复合材料的初始储能模量增大,但ZIF-8的位阻效应使得体系的交联密度降低,自由体积增大。因此与高添加量(≥10wt%)的POSS、中空SiO2等无机填料相比,ZIF-8/BT树脂纳米复合材料因纳米孔隙的引入、三嗪环的生成以及自由体积的增大使其在超低添加量(≤1.0wt%)即可有效降低介电常数,并保持了良好的耐热性及耐湿性。
(3)将NH2-MIL-125加入到双马来酰亚胺-三嗪树脂体系中,制备了NH2-MIL-125/BT纳米复合材料。研究结果表明,NH2-MIL-125明显催化了氰酸酯的自聚反应,降低了BT树脂的固化温度,使BT树脂的交联结构中三嗪环增多,初始储能模量增大,但NH2-MIL-125的位阻效应使得体系的交联密度减小、自由体积增大。随着NH2-MIL-125添加量的增大,除了BT树脂的固化反应外,还存在氨基与双马来酰亚胺之间的“Michael”加成反应,这有助于有效降低BT树脂中的电荷聚集,它与纳米孔隙的引入、三嗪环的生成以及自由体积的增大一起共同降低了BT树脂的介电常数。同时,NH2-MIL-125在BT树脂中分散均匀,能起到明显的纳米粒子增韧效果。此外,NH2-MIL-125/BT纳米复合体系具有优异的热稳定性和耐湿性能。
(4)采用F4-UiO-66改性双马来酰亚胺-三嗪树脂,制备了F4-UiO-66/BT树脂纳米复合材料。研究结果表明,F4-UiO-66能有效催化氰酸酯的固化反应,促进BT树脂固化形成更多的三嗪环,使得BT树脂体系的初始储能模量增加,但F4-UiO-66的空间位阻和氟原子的低极性致使体系交联密度减小,自由体积增大、Tg减小。F4-UiO-66的引入使得BT体系中孔隙率增大、三嗪环及氟原子增多、自由体积增大,因此,F4-UiO-66/BT纳米复合材料的介电常数明显降低。F4-UiO-66在BT树脂中分散均匀,增强了BT树脂的韧性,并维持了纳米复合材料的热稳定性和耐湿性能。
本文合成了沸石咪唑型的锌基MOFs(ZIF-8)、氨基功能化的钛基MOFs(NH2-MIL-125)、氟功能化的锆基MOFs(F4-UiO-66)三种金属有机骨架,分别利用ZIF-8、NH2-MIL-125、F4-UiO-66改性BT树脂,并进一步研究了不同种类不同含量的MOFs对BT树脂体系的固化机理、热力学性能、介电性能及耐湿性能的影响。具体研究内容如下:
(1)分别采用回流法、溶剂热法成功制备了ZIF-8、NH2-MIL-125、F4-UiO-66。通过系列表征手段发现,ZIF-8具有正十二面体结晶形貌、高的比表面积(1509m2g-1)和微孔结构(1.0nm)。NH2-MIL-125晶体为正八面体,其比表面积和微孔孔径分别为1250m2g-1和0.66nm。与ZIF-8、NH2-MIL-125相比,F4-UiO-66的结构规整度不高,无明显结晶形貌,且比表面积低(282m2g-1),呈微孔/介孔(0.3~3.8nm)结构。ZIF-8、NH2-MIL-125具备较强的电子络合能力,而F4-UiO-66的电子络合效应不明显。
(2)利用ZIF-8改性双马来酰亚胺-三嗪树脂,制备了ZIF-8/BT纳米复合材料。研究结果表明,ZIF-8对BT树脂的固化过程有明显的催化作用。随着ZIF-8用量的增加,ZIF-8/BT共混物的固化温度不断降低。当ZIF-8的添加量达到0.5wt%时,ZIF-8/BT共混物的DSC曲线呈双峰,分别对应于氰酸酯的自聚以及氰酸酯与双马来酰亚胺的共聚,这是因为ZIF-8中的Zn2+和咪唑协同催化了氰酸酯的自聚,使其在低温发生,改变了BT树脂的固化历程。ZIF-8在BT树脂中分散均匀并具有一定增韧效果。加入ZIF-8后,因更多刚性的三嗪环的生成,复合材料的初始储能模量增大,但ZIF-8的位阻效应使得体系的交联密度降低,自由体积增大。因此与高添加量(≥10wt%)的POSS、中空SiO2等无机填料相比,ZIF-8/BT树脂纳米复合材料因纳米孔隙的引入、三嗪环的生成以及自由体积的增大使其在超低添加量(≤1.0wt%)即可有效降低介电常数,并保持了良好的耐热性及耐湿性。
(3)将NH2-MIL-125加入到双马来酰亚胺-三嗪树脂体系中,制备了NH2-MIL-125/BT纳米复合材料。研究结果表明,NH2-MIL-125明显催化了氰酸酯的自聚反应,降低了BT树脂的固化温度,使BT树脂的交联结构中三嗪环增多,初始储能模量增大,但NH2-MIL-125的位阻效应使得体系的交联密度减小、自由体积增大。随着NH2-MIL-125添加量的增大,除了BT树脂的固化反应外,还存在氨基与双马来酰亚胺之间的“Michael”加成反应,这有助于有效降低BT树脂中的电荷聚集,它与纳米孔隙的引入、三嗪环的生成以及自由体积的增大一起共同降低了BT树脂的介电常数。同时,NH2-MIL-125在BT树脂中分散均匀,能起到明显的纳米粒子增韧效果。此外,NH2-MIL-125/BT纳米复合体系具有优异的热稳定性和耐湿性能。
(4)采用F4-UiO-66改性双马来酰亚胺-三嗪树脂,制备了F4-UiO-66/BT树脂纳米复合材料。研究结果表明,F4-UiO-66能有效催化氰酸酯的固化反应,促进BT树脂固化形成更多的三嗪环,使得BT树脂体系的初始储能模量增加,但F4-UiO-66的空间位阻和氟原子的低极性致使体系交联密度减小,自由体积增大、Tg减小。F4-UiO-66的引入使得BT体系中孔隙率增大、三嗪环及氟原子增多、自由体积增大,因此,F4-UiO-66/BT纳米复合材料的介电常数明显降低。F4-UiO-66在BT树脂中分散均匀,增强了BT树脂的韧性,并维持了纳米复合材料的热稳定性和耐湿性能。