低介电MOFs/双马来酰亚胺-三嗪树脂纳米复合材料的固化机理与性能研究

来源 :重庆工商大学 | 被引量 : 0次 | 上传用户:yangqun0215
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
集成电路中的信号延迟和串扰是制约微电子工业发展的重要因素。社会的发展和需求要求未来的电子器件具有更好的信号传输效率和更高的信号传播速度。印制电路板(PCB)作为集成电路中的重要组成部分,对电子信号的传播有着显著的影响。因此,选择具有低介电常数的树脂基体作为PCB基板材的胶粘剂对介电性能的提升有重要作用。双马来酰亚胺-三嗪树脂(BT树脂)因具有优异的介电性能和高耐热性等特点,近年来,其在介电通讯材料领域被广泛关注。然而,BT树脂的固化温度高、介电性能不突出却有限制它在未来电子通讯材料中的应用。因此,开发介电常数低、介电损耗低、固化温度低的新型BT树脂成为当前亟需解决的问题。本文通过在BT树脂体系中引入MOFs的孔隙结构、催化位点,制备了固化温度低和介电性能优良的BT树脂纳米复合材料。
  本文合成了沸石咪唑型的锌基MOFs(ZIF-8)、氨基功能化的钛基MOFs(NH2-MIL-125)、氟功能化的锆基MOFs(F4-UiO-66)三种金属有机骨架,分别利用ZIF-8、NH2-MIL-125、F4-UiO-66改性BT树脂,并进一步研究了不同种类不同含量的MOFs对BT树脂体系的固化机理、热力学性能、介电性能及耐湿性能的影响。具体研究内容如下:
  (1)分别采用回流法、溶剂热法成功制备了ZIF-8、NH2-MIL-125、F4-UiO-66。通过系列表征手段发现,ZIF-8具有正十二面体结晶形貌、高的比表面积(1509m2g-1)和微孔结构(1.0nm)。NH2-MIL-125晶体为正八面体,其比表面积和微孔孔径分别为1250m2g-1和0.66nm。与ZIF-8、NH2-MIL-125相比,F4-UiO-66的结构规整度不高,无明显结晶形貌,且比表面积低(282m2g-1),呈微孔/介孔(0.3~3.8nm)结构。ZIF-8、NH2-MIL-125具备较强的电子络合能力,而F4-UiO-66的电子络合效应不明显。
  (2)利用ZIF-8改性双马来酰亚胺-三嗪树脂,制备了ZIF-8/BT纳米复合材料。研究结果表明,ZIF-8对BT树脂的固化过程有明显的催化作用。随着ZIF-8用量的增加,ZIF-8/BT共混物的固化温度不断降低。当ZIF-8的添加量达到0.5wt%时,ZIF-8/BT共混物的DSC曲线呈双峰,分别对应于氰酸酯的自聚以及氰酸酯与双马来酰亚胺的共聚,这是因为ZIF-8中的Zn2+和咪唑协同催化了氰酸酯的自聚,使其在低温发生,改变了BT树脂的固化历程。ZIF-8在BT树脂中分散均匀并具有一定增韧效果。加入ZIF-8后,因更多刚性的三嗪环的生成,复合材料的初始储能模量增大,但ZIF-8的位阻效应使得体系的交联密度降低,自由体积增大。因此与高添加量(≥10wt%)的POSS、中空SiO2等无机填料相比,ZIF-8/BT树脂纳米复合材料因纳米孔隙的引入、三嗪环的生成以及自由体积的增大使其在超低添加量(≤1.0wt%)即可有效降低介电常数,并保持了良好的耐热性及耐湿性。
  (3)将NH2-MIL-125加入到双马来酰亚胺-三嗪树脂体系中,制备了NH2-MIL-125/BT纳米复合材料。研究结果表明,NH2-MIL-125明显催化了氰酸酯的自聚反应,降低了BT树脂的固化温度,使BT树脂的交联结构中三嗪环增多,初始储能模量增大,但NH2-MIL-125的位阻效应使得体系的交联密度减小、自由体积增大。随着NH2-MIL-125添加量的增大,除了BT树脂的固化反应外,还存在氨基与双马来酰亚胺之间的“Michael”加成反应,这有助于有效降低BT树脂中的电荷聚集,它与纳米孔隙的引入、三嗪环的生成以及自由体积的增大一起共同降低了BT树脂的介电常数。同时,NH2-MIL-125在BT树脂中分散均匀,能起到明显的纳米粒子增韧效果。此外,NH2-MIL-125/BT纳米复合体系具有优异的热稳定性和耐湿性能。
  (4)采用F4-UiO-66改性双马来酰亚胺-三嗪树脂,制备了F4-UiO-66/BT树脂纳米复合材料。研究结果表明,F4-UiO-66能有效催化氰酸酯的固化反应,促进BT树脂固化形成更多的三嗪环,使得BT树脂体系的初始储能模量增加,但F4-UiO-66的空间位阻和氟原子的低极性致使体系交联密度减小,自由体积增大、Tg减小。F4-UiO-66的引入使得BT体系中孔隙率增大、三嗪环及氟原子增多、自由体积增大,因此,F4-UiO-66/BT纳米复合材料的介电常数明显降低。F4-UiO-66在BT树脂中分散均匀,增强了BT树脂的韧性,并维持了纳米复合材料的热稳定性和耐湿性能。
  
其他文献
化石燃料的过度使用造成了严重的环境污染和能源短缺问题,引起了全世界的广泛关注。为了解决上述问题,迫切需要找到一种清洁能源替代化石燃料,从源头进行控制。在完成完全替代前,还是会产生环境污染(如产生NO_x),所以也需要进行末端治理。氢能是一种理想的清洁能源,燃烧的产物只有水,而且它的能量利用率极高。制备氢能的方法有煤炭气化制氢、重油及天然气水蒸气催化转化制氢,还有电催化制氢和光催化制氢。其中,光催化制氢可直接利用太阳能将水转化为氢能,但目前光催化转化效率还很低,因此迫切需要
学位
我国废活性炭产生量逐年增加。废活性炭如处置不当,极易形成二次固(危)废,产生环境污染,造成可再生资源的浪费。低温等离子体再生处理废活性炭,具有时间短、效率高、工艺流程简单等特点,但仍存在能耗高、处理能效有待提升等问题。本文立足低温等离子体技术再生处理废活性炭存在的不足,将Mn_3O_4涂敷应用于自制低温等离子体反应器电极,开展介质阻挡协同Mn_3O_4催化技术再生处理废活性炭的研究,为废活性炭处置及资源化利用提供技术支持。为探究Mn_3O_4涂敷对等离子体放电性能的影响,
学位
过度依赖化石燃料来满足当前的能源需求正导致严重的空气污染和能源短缺。这些问题引起了全球高度重视,迫切需要解决。可以采用消除空气污染物的“末端处理”方法和清洁能源替代化石燃料的“源头控制”方法来解决上述问题。氮氧化物(NO_x,x=1或2)是造成空气污染的主要原因之一,会引起严重的环境问题。已经采取了许多技术来去除氮氧化物,例如热催化,光催化和电催化。与电催化的能耗性和热催化的不安全性相比,光催化去除氮氧化物是一种相对高效且节能的技术。但是,仅消除氮氧化物只是一种“治标不治
磷和有机物是城镇污水处理厂二级生化出水中难以稳定达标的两个指标。常规的混凝法可以对废水中的磷有较好的处理效果,对废水中有机物有一定的去除效果,但只采用混凝法难以使废水中的磷和有机物同时达到排放标准,臭氧氧化因为其高效的氧化作用对有机物去除效果较好,但单独臭氧成本高。本文采用臭氧-混凝组合工艺同步去除废水中磷和有机物,探究了磷和有机物同步去除的臭氧-混凝最佳组合方式。本文主要结论如下:单独混凝过程,考察了混凝剂投加量、p H、废水初始浓度及水力条件对废水中磷和有机物去除效果
学位
金属的严重腐蚀在各种行业中总是导致增加的结构破坏和巨大的经济损失;严重的金属腐蚀还会造成人员伤亡事故,阻碍科学技术和生产的发展。因此采取合理有效的防护措施,减缓材料的腐蚀速度的研究意义重大。有机涂层法是应用最为广泛、经济、有效的一种防腐蚀手段。环氧涂料已被广泛应用于腐蚀性介质的腐蚀保护涂层,归因于其出色的耐化学性,附着力,优异的机械和摩擦强度耐受性。PANI作为导电高分子材料在防腐涂料的基础和应用研究越来越多。由于PANI溶解性差,本身的多孔性、低黏附性,使其必须与其他组
苯甲醛是工业上常用的芳香醛,广泛应用于医药与精细化工等领域。相比氯化苄水解法制备苯甲醛的传统工艺,苯甲醇氧化法具有环境友好、工艺简单的优点,能够合成具有大量市场需求的无氯苯甲醛。苯甲醇氧化工艺的效率直接由催化剂的性能所决定,因此得到性能优异的催化剂是苯甲醇氧化工艺的研究重点。相对于其它催化剂,高活性的Au催化剂在苯甲醇氧化反应中应用较为广泛。Au催化剂性能往往受活性金属中心的尺寸、形态以及分散度等的影响,而在催化剂的制备和设计中,载体材料与制备方法决定了催化剂活性中心的形
学位
热解法能实现污水污泥(SS)的减量化、无害化以及资源化,是一种可持续的污泥处置技术。SS经热解处理后,得到炭、焦油和热解气等主要产物。为实现污泥热解炭在废水处理领域的资源化利用,本硕士论文预期通过污泥热解炭制备铁碳微电解填料处理制药废水,以提高其生化性。本论文首先研究了SS的热解特性,讨论了C、N、S等元素在热解过程的演变规律;然后以SS为主要原料,采用热解法制备了一种新型污泥基微电解填料(SMEF),以盐酸四环素(TC)为模拟污染物确定了SMEF的最佳制备条件;最后系统
学位
化石燃料的大量消耗是造成环境污染和能源短缺的重要原因之一,威胁着人类文明发展,目前迫切需要解决。用清洁能源代替化石燃料已成为未来发展的普遍方向。氢能被认为是最理想的清洁能源之一,具有高能量密度,环境友好性和可持续性。众所周知,有许多方法可以产生氢气(例如水煤气转换,水电解或光解),其中光催化制氢是一种通过将光能转化为化学能并进一步将水分解为氢气的有效方法。但是完全替代化石燃料将花费很长时间,在此期间仍将产生污染物(如NO)。因此,针对上述问题的更有效解决方案是通过“源头控
学位
随着人口的快速增长和工业经济的发展,引起的水资源紧缺和水污染问题受到了社会的普遍关注。我国对环境保护和治理高度重视,坚持预防为主、综合治理,着力推进水污染防治。在水处理过程中,混凝主要去除水体中的悬浮胶体颗粒。而絮凝剂作为混凝法的关键,其混凝性能的好坏决定了水处理效果。壳聚糖基絮凝剂具有来源广泛、含官能团多、毒性低的优势,成为絮凝剂领域的研究热点。通过引入绿色、高效、经济、适用性广的壳聚糖(CS)可增加有机高分子絮凝剂的生物降解性和壳聚糖的资源化利用途径。本研究针对壳聚糖
学位
低温催化氧化技术处理挥发性有机物(VOCs)具有极大的应用潜力,锰氧化物表现出较好的催化性能。针对填补目前实际应用中缺乏的廉价、高效、寿命长的非贵金属催化剂的空缺,本文致力于提高MnO_2催化氧化性能。利用三种不同的改性方法,可控合成了具有特殊微观结构的MnO_2催化剂,阐明催化剂结构与催化效果间的构效关系。利用in-situ DRIFTS技术动态追踪反应物、中间产物和终产物演变过程,揭示不同的MnO_2催化剂催化降解甲苯的反应机理。这将为制备高效分解甲苯的MnO_2催化
学位