铝微结构切割加工试验研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:westlink
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铝及铝合金具有密度低、强度高、导热性好等优点,其微结构在微机电系统(MEMS)领域被广泛的应用。然而,由于铝的硬度较低,机械加工时容易变形,很难达到铝微结构的加工尺寸和精度。而微细电火花加工、激光加工等非接触加工方法存在加工表面质量较差,效率较低等缺点。本文采用微尺度线状工具,分别开展了铝微缝结构的微细电解切割加工、微细电解电火花复合切割加工以及钨丝切割加工试验研究。主要研究内容如下:(1)提出一种基于硝酸钠乙二醇溶液的铝微结构微细电解切割加工方法。分析了铝在硝酸钠水溶液和硝酸钠乙二醇溶液中的电化学溶解特性,发现硝酸钠乙二醇溶液能有效抑制铝在电解加工过程中的杂散腐蚀现象。试验研究了加工电压、脉冲频率和占空比三个参数对铝微缝结构加工质量的影响。采用直径200μm的微螺旋电极,以优化后的加工参数:电压10V、脉冲频率200k Hz、占空比20%、进给速度0.2μm/s,在0.1mm厚的铝箔上加工出了平均宽度283.1μm的铝微缝结构。(2)提出一种基于硝酸钠乙二醇溶液的铝微结构微细电解电火花复合切割加工方法,该方法能有效提高铝微结构的加工效率并保证加工质量。本文分析了其加工原理及加工过程,包括气膜形成过程和材料去除过程。试验研究了工作液浓度、工具电极转速、脉冲频率、进给速度四个参数对复合加工状态和加工效果的影响。试验研究表明,较高的工具电极转速是稳定复合加工状态的关键因素。采用直径200μm的微螺旋电极,以优化后的参数:工作液浓度1mol/L、工具电极转速30krpm、脉冲频率200k Hz、进给速度1.4μm/s,在1mm厚的铝片上加工出了平均宽度175.9μm,表面粗糙度0.192μm铝微缝结构以及铝的复杂微结构。(3)提出一种采用钨丝作为工具的铝微缝结构切割加工方法,该方法能加工更小尺度的铝微缝结构。为了提高该加工方法的稳定性及加工效率,本文提出第一/第二进给速度顺序进给的加工方法,首先用较低的第一进给速度在铝箔边缘加工出切口,然后用第二进给速度完成微缝结构的高速切割,其最大进给速度能达到500μm/s。试验研究了不同的第一/第二进给速度对缝宽一致性和表面粗糙度的影响。试验结果表明使用较为接近的第一/第二进给速度能加工出表面粗糙度较低的铝微结构。最终采用直径50μm的钨丝在0.1mm厚的铝箔上加工出了长度达5mm且具有良好的缝宽一致性和表面粗糙度的铝微缝结构。
其他文献
化石燃料的急剧消耗以及由此引发的全球性环境问题,使得清洁能源的开发成为能源战略的关键,也是研究的焦点和前沿。电解水制氢是将可再生能源产生的电能转换为高能量密度氢能的重要途径,且具有清洁高效、操作简单等特点。析氢反应(HER)电催化剂是实现这一过程的关键材料,具有高催化活性的电催化剂能有效地降低HER过电势,加快反应动力学过程,从而提高电解水制氢的效率。目前HER商用的是Pt基贵金属催化剂,因为价格
电解铣削加工(Electrochemical Milling)是一种基于电化学阳极溶解原理的加工方式,加工时,采用结构简单的棒状工具阴极,以类似数控铣削的加工方式,控制高速旋转的工具阴极沿设定的加工路径进给,从而在工件上加工出一定的结构和表面。电解铣削加工是一种非接触式加工,具有无切削力、无热影响区和再铸层、无加工变形和颤振、无刀具损耗等优势,可解决蒙皮等易变形的薄壁类零件在机械加工中存在的变形和
虽然人类社会进步发展迅速,但也带来了诸多的环境问题,环境污染与能源短缺就是较为突出的两大问题。如何有效治理环境污染,以及寻找绿色、无污染、可再生的新能源来解决化石能源危机,成为了人们关注的焦点。研发新型高效的功能材料为解决这两方面的问题提供了积极的思路。金属-有机骨架(MOFs)材料是近些年迅速发展起来的一种新型有机-无机杂化材料,因自身诸多优点,受到研究者的广泛关注。本文的主要工作就是制备了一系
航空电子设备向着小型化、集成化发展,对大气辐射越来越敏感,大气中子辐射对飞机机载电子设备是一种威胁,高能粒子对飞机系统电子元件的轰击会产生单粒子翻转事件(Single Event Upset,SEU)。单粒子效应可以导致多种失效条件,包括数据错误和系统故障等,对飞机安全有严重危害。大气中高能粒子对民航飞机电子系统的影响正日益受到重视,单粒子事件相关的系统安全性审查也日益引起了多国适航当局的高度重视
在套料电解加工过程中,由于杂散腐蚀的存在,加工工件侧壁存在锥度。锥度是影响工件精度的一个重要因素,工程应用对加工工件的锥度具有较高要求。为了控制加工锥度,本文开展了变电压套料电解加工仿真与试验研究,具体研究内容如下:(1)开展了线性变电压电解加工仿真,对比分析不同阴极刃厚度以及不同曲率半径对工件锥度的影响。仿真结果表明:阴极刃厚度越薄,加工工件的锥度值越小;阴极刃曲率半径越小,电压参数的变化引起的
光学生物传感技术把生物识别事件通过光学信号的变化显示出来,从而实现对化学、生物信息的定量分析,具有灵敏度高、检测速度快、能够实现多通道检测等优点。纳米材料通常有一些纳米材料独有的物理化学性质,其中一些纳米材料表现出酶样活性,是天然酶的高度稳定和低成本的替代品,这种纳米材料成为纳米酶。与天然酶相比,纳米酶具有低成本、高稳定性和耐用性等优点,是天然酶的高度稳定和低成本的替代品。纳米酶的发现给生物传感器
高分子材料的性能与材料的结构和分子的运动有关,分子的运动受到外部环境的影响。目前有很多研究者通过实验的方式研究高分子材料的结构、外部环境对高分子材料力学性能的影响,高分子材料的某些微观结构不易控制,无法通过实验的方式进行研究,同时实验不能在微观层面上研究高分子材料的分子运动。为了解决这些问题,本文使用计算机模拟方式来探究微观结构和外界条件对聚乙烯体系力学性能的影响。本文首先使用蒙特卡洛方法建立半晶
近年来,随着化石能源的减少与环境污染的加重,以氢气为主要能源载体的氢经济能源转换方式引起了人们广泛的关注,其具有清洁且高效的优点,发展前景广阔。目前,电解水制氢和燃料电池设备分别被认为是氢气的产生和利用中最清洁且有效的方式,但它们的效率仍有待提高。寻找廉价且高效的催化剂是这两种设备发展的关键所在。而我们的工作就主要集中于此类氢经济催化剂的设计与研究中。调研发现,二硫化钼(MoS_2)材料在多种溶液
滚动轴承是机械传动系统中支撑旋转件、承受负载、减少摩擦损耗的关键零部件。滚动轴承经常处于高速或重载的严苛工作条件,大量摩擦生热和积累会导致轴承温度过高,使得轴承寿命大大降低,进而严重影响机械设备的正常运转。油气润滑具有精确控制油气参数、润滑冷却效率较高、耗油量低等优势,能够显著降低轴承温升,提高轴承寿命。工程应用中对轴承寿命特别关注,然而轴承寿命影响因素较多,分析评估困难。基于此,本文以油气润滑角
钛合金磨削过程中产生的高温易使工件表面出现磨削烧伤,降低工件耐磨性、耐腐蚀性和疲劳强度等,严重影响工件的使用性能。为保障工件加工质量、提高工件生产效率,生产上急需一种高效的磨削烧伤识别方法。基于深度学习的钛合金磨削烧伤图像识别方法可以减少图像预处理流程,避免手工特征提取,提高烧伤识别准确率,实现磨削烧伤的无损快速检测。本文基于深度学习理论,以TC4钛合金为研究对象,针对磨削烧伤的图像识别进行深入研