对称锥互补问题解的性质

来源 :天津大学 | 被引量 : 0次 | 上传用户:BLUECAT
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文讨论对称锥互补问题(SCCP)解的性质,主要内容包括以下两个方面.第一,考虑一般的SCCP,首先引入例外簇的概念,然后,通过使用引入的例外簇,建立了一个SCCP解的存在性定理.最后,讨论了SCCP解存在的若干充分条件,包括单调性条件,Karamardian条件和强制性条件.第二,考虑具有笛卡尔P*(K)-变换的对称锥线性互补问题,记为笛卡尔P*(K)-SCLSP.首先建立笛卡尔P*(K)-SCLSP解的存在性定理,然后证明如果笛卡尔P*(K)-SCLCP的解集是非空的,则它是凸的.最后证明如果P*(K)-SCLCP有严格可行解,则它的解集是非空的且是紧的.在论文的分析中,欧几里德若当代数理论是一个主要工具.
其他文献
全局优化研究非线性函数的全局最优解的特征和计算方法。它研究的是确定目标函数在某个无约束或者约束区域内的近似全局最优解。   随着科学技术的发展,全局优化问题广泛见
随着科学的发展,函数空间上算子理论已成为人们研究的热点.由于研究的载体是函数空间,所以这些常见的算子必是由某些函数诱导出的,从而我们需要探讨这些算子的性质和它们的诱
细胞自动机由John von Neumann于上世纪50年代提出.在形态表现上.每个细胞自动机均是一个离散型的动力系统,它由一些特定规则的格子组成,每个格子可视为一个细胞.随着时间的
学位
本文分析了两类分数阶微分方程,一方面把泰勒展开法运用到分数阶Bagley-Torvil方程中,得到此方程的近似解,另一个方面解决了分数阶Jerk模型的混沌控制问题。论文运用了多种手
本文主要考虑半导体模型经典解的存在性和逐点估计与分子动力学方程真空间题解的时间一致稳定性两方面的问题.具体内容如下:   第一章为绪言.在这里,我们回顾了半导体方程
学位
聚类分析是统计学的重要分支,传统的研究是基于相似性度量的选择,或基于划分的迭代方法,来对样本进行划分,并将类内距离最小及类间距离最大作为评判标准。随着现代社会信息化技术
动力系统是当代数学研究的热点领域之一.动力系统的研究可以追溯到牛顿与莱布尼茨创立微积分,建立三大运动定律以及万有引力定律的非凡的科学家.在牛顿的体系中,以时间为参变