论文部分内容阅读
工程中存在很多由多个部件叠放而成的机械系统,如桥式起重机、港口起重机以及海上火箭回收平台等。从力学机制来看,这些部件之间存在着明确的单面约束特征。在地震、波浪等基础激励的作用下,部件与部件之间或者整体与基础之间往往发生明显的相对运动,例如滑移、瞬时脱离甚至脱轨,等等。传统的结构动力学方法无法描述单面约束,因此通常将部件之间做绑定处理,进而可采用准静态分析策略(例如反应谱法)来简化结构的瞬态响应分析,所得结果相对保守,无法反映实际的运动情况。多体系统动力学在约束的处理方面积累了大量的成果,因此,将叠放机械系统纳入到多体系统动力学的框架下进行分析就成了自然的选择。实践表明,这类系统不仅包含多体系统动力学的共性问题,还呈现出一些鲜明的特征:从对象结构上看,这些系统尺寸和跨度往往很大,整体呈现出柔性特征,属于多柔体系统接触碰撞动力学的研究范畴;从体系结构上看,这些系统往往需要将部件保持在既定位置,因此其宏观刚体运动往往幅值不大,但由此造成的冲击效应又非常剧烈;从结构设计上看,在设计阶段往往需要依据虚拟样机的仿真结果对设计进行反复修正和验证,重复建模工作量庞大。本文在多柔体系统动力学的框架下,探讨了叠放多体系统的针对性建模方法、柔体间动态接触力的求解以及对复杂工况长时间积分的精细调控等问题。主要工作如下:(1)提出一种分析叠放机械系统瞬态响应的广义模态叠加法。本文将多柔体系统接触碰撞问题导入到叠放机械系统中,结合其宏观刚体运动幅值小、变化快的特征,将这类系统归纳为“类结构叠放多体系统”。论证了自由约束条件下的刚体模态能够反映叠放部件的微幅刚体运动,继而联合应用模态叠加法和模型降噪方法将叠放多体系统的动力学方程改写为一组模态方程。其优势是不需对单面约束进行任何简化,能够反映真实的机构特征,在保证可靠精度的同时提高了建模效率。模型降噪方法能够在建模阶段可控的滤除伪高频振荡,降低系统刚性的同时减少了高频振荡对接触力求解的干扰。(2)提出了多柔体系统中瞬态接触力的分析模型以及求解方法。叠放多体系统部件间的约束机制通过接触力来实现,对柔性部件进行有限元离散引入的伪高频振荡问题使得柔体间接触力的求解变得异常复杂。本文首先引入互补问题描述柔体间的动态接触力,通过在短时区间内对缝隙函数进行均匀化,进而利用时均缝隙函数和接触力建立线性互补方程,最后提出一种规范化方法改善数值性态。该方法客观上将突变的冲击力光滑化,能够综合考虑平顺接触和碰撞,不需在接触状态发生改变时切换模型。同时,接触力的幅值由柔体的本构关系确定,不需要引入多余的本构关系,继而避免了不同本构关系之间的相互干扰。(3)提出了一种避免非零基线问题的人工地震波直接拟合方法。该方法首先将位移时程表示为包络函数与三角级数相乘的形式,进一步求导获得速度、加速度时程表达式,根据地震波在起始段和衰减段应满足的归零条件即可确定该包络函数,从而在拟合前就避免了零线漂移现象。在此基础上,依据单自由度系统的谐波响应解析解,将以反应谱为目标的合成地震波问题转化为一组关于谐波组合系数的非线性方程,进而利用非线性方程组的高效算法求解。数值算例表明拟合误差在5%以内,耗时在200s以内。所提方法为人工地震波快速拟合提供了一种新途径。(4)以三代核环吊为应用背景,针对复杂激励条件下的长时间仿真问题提出一种分段精细调控策略。含接触碰撞问题的大规模结构瞬态响应分析是多柔体系统动力学的前沿课题,其中包含的时空多尺度特征使得求解极为困难。本文辨析了自适应积分器求解控制参数的意义,通过对典型工况进行计算得到了满足数值稳定性的积分步长分布规律,将求解区间进行分段,依据每段区间内的数值性态对积分器最大步长进行限制,避免了自适应积分器进行的大量无效搜寻过程,在不干扰数值求解的前提下显著提高了效率。利用所提方法对地震激励下的核环吊进行瞬态分析,侦测到了跳轨、滑移以及水平冲击等传统结构动力学方法难以反映的非光滑现象,验证了本文方法的有效性。