论文部分内容阅读
随着科学技术的不断发展,差分方程及其理论在生物、经济、物理等领域得到了广泛的应用.与线性差分方程(组)相比,非线性差分方程(组)呈现出更复杂的动力学行为.有理差分方程作为一类特殊的非线性差分方程,其研究已逐步成为差分动力系统的一个重要分支,并且具有极高的理论价值和应用价值. 本文主要内容如下: 第一章,我们介绍了有理差分方程的发展动态和研究价值,并给出了论文讨论中所需的基本定义和基本理论. 第二章,我们针对一类k+2阶有理差分方程,运用差分方程的稳定性理论、半环分析法、收敛性定理等技巧,讨论了系统的全局动力学行为,包括正平衡点的局部稳定性和全局渐近稳定性,解的周期性、有界性、半环性以及方程的不变区间. 第三章,我们研究了一类三阶有理差分方程组具有非零初值的公式解,并且针对其中几个结果给出了严格的数学证明.进一步,基于所得到的公式解,分析了这些解的周期性,得到了方程组存在周期解与反周期解的充要条件. 第四章,我们研究了一类四阶有理差分方程组具有非零初值的公式解.其次讨论了这些解的周期性,得到了方程组存在周期解与反周期解的充要条件.最后分析了方程组的解的极限形式.