论文部分内容阅读
随着新一代信息技术、人工智能技术与制造技术的不断融合,制造产业向智能化转型已成为发展的必然趋势。高端数控机床及由其组成的柔性制造系统是智能制造的重要基础。高端数控机床服役过程中,使用工况多变、运行环境复杂,导致数控机床系统性能状态呈现不可逆的退化趋势。在服役阶段,性能劣化及频繁的故障会严重的影响加工精度和生产效率。因此,如何保证数控机床的服役性能成为了设计者、生产厂商及使用者共同关注的焦点问题。对于高端数控机床,其部件退化特征多样,可靠性数据具有小样本特征,传统的基于失效数据的单一性能评估方法有一定的局限性。本文基于“状态监测数据”、“标准S形试件”及“多源数据融合”,在寿命预测、整机运行可靠性评价方面对高端数控机床的服役性能进行评价与预测。主要研究内容如下:(1)构建了基于混合预测方法的关键部件剩余寿命预测模型。对于退化型失效的数控机床关键功能部件,由于运行工况、使用环境、维修程度等因素的影响,功能部件的退化程度和失效时间存在较大的离散性。采用数据驱动和人工智能相结合的综合预测方法,构建了基于RVM和改进幂函数相结合的剩余寿命预测模型,该模型可以适应退化过程的不确定性,在不影响实际的切削过程的前提下,快速、便捷地对运行状态进行评估并对剩余寿命进行预测。(2)研究了基于S试件的高端数控机床整机运行可靠性的评价方法。对于服役阶段的高端数控机床,在复杂、多因素动态作用下,使其运行性能及精度保持性在时间维度内的退化情况各异。目前,在运行工况下,基于加工精度的运行可靠性评价还没有形成统一的标准。探讨了结合面性能劣化与加工精度映射的误差传递模型,提出基于S形试件整机运行可靠性的评价模型。该模型通过标准化S试件的加工工况,对整机施加恒定的激振力,定期监测固定切削工况的特征信号。构建三个维度评价指标(熵值维度、三维希尔伯特幅值谱的可视化维度,边际谱的重心频率的数值量化维度)来综合评估机床的劣化程度,从而对数控机床整机的运行性能及加工质量进行量化与评估。(3)构建了多源信息融合的高端数控机床综合可靠性评价模型。高端数控机床的运行可靠性不但与设计制造阶段的固有可靠性有关,而且与服役阶段的使用维修水平相关。系统地研究了维修履历数据、运行状态信息、加工精度三个维度的可靠性数据融合建模方法,构建了基于模糊层次分析法的高端数控机床综合可靠性评价模型。建立了运行可靠性及质量可靠性评价指标体系,提出的可靠性评估方法既能兼顾机床故障时间反映的“先天因素”,也能兼顾运行状态和加工质量反映的“后天因素”,以此多维度、准确地评价数控机床的综合可靠性。(4)构建了基于模糊贝叶斯网络的生产线中数控机床可靠性评价模型。深度融合子系统可靠性实验数据、现场运维数据、相似系统的维修数据。将模糊理论和贝叶斯网络相结合,解决了多态系统各根节点状态概率难以精确获得的问题,提高了处理不确定性问题的能力。(5)提出了基于寿命预测的联合维修决策模型。为保障高端数控机床高可靠性、低成本运行,针对计划维修容易造成过修或欠修,提出了基于视情维修与计划维修的联合决策模型。该模型综合利用了关键功能部件的整体的寿命分布函数及个体部件的寿命预测结果,以平均维修费用最小为优化目标,采用维修时间间隔和剩余寿命维修阈值为优化变量。通过蒙特卡罗仿真进行了维修费用、维修间隔及维修阈值的协同分析,为维修方案的决策及维修费用的预算提供技术支撑。