论文部分内容阅读
本篇论文我们研究几类半变分不等式解的存在性问题.
在第一章我们首先介绍关于半变分不等式的研究背景及一些概念和引理.
在第二章我们研究下面p-laplacian方程的Dirichlet边界问题其中Ω∈Rn是有界域,位势函数j(z,·)是局部Lipschitz的.很多学者已经用各种方法对此问题作了大量的研究,如拓扑度理论,山路引理,环绕定理等.在应用这些理论中,所要解决的首要问题就是要证明非光滑PS紧性条件,而对紧性条件的刻画上,也已经有了更一般的非光滑PS紧性条件,本章将通过用更一般的非光滑PS紧性条件来证明解的存在性.
在第三章我们研究关于p(x)-laplacian方程的Dirichlet边界问题
由于p(x)-laplacian相对于p-1aplacian具有更加复杂的非线性性质,如它是不同胚的且p(x)-laplacian的特征值的下确界等于0,因此处理起来难度加大,所以通过对位势函数给出合理假设,也对p(x)给出一定的要求,利用非光滑临界点理论中的环绕定理来证明多解的存在性.
在第四章我们研究拟线性半变分不等式径向解与非径向解问题厂(v2£v叫+6(z)Ⅲw)矗z+厂霹(z,¨(z);一叫(z))dz≥0,v叫∈日。∫RN(△u△w+b(x)uw)dx+∫RNF20(x,u(xz);-w(x))dx≥0,A∈ H。对于半线性情形的径向与非径向解已经解决,本文考虑拟线性情况,利用非光滑情形的喷泉定理和山路引理来证明非平凡解和无穷多径向解与非径向解的存在性.这里主要用到的工具是局部Lipschitz泛函的对称临界原理.