论文部分内容阅读
冷分子技术的不断进步为基本物理常数的精密测量,高分辨率光谱以及冷碰撞等广阔领域的飞速发展提供了重要的基础。冷分子的众多应用领域中,电子电偶极矩(eEDM)的精密测量作为揭示宇宙中物质-反物质不平衡性,电荷共轭-宇称反演对称性破缺等科学谜团的重要实验之一,目前已经成为探索超越粒子物理标准模型新物理的重要平台。尤其是在探寻新的作用力,新的作用粒子方面,相对于大型强子对撞机等大型科学装置,eEDM精密测量已显示出其成本与可操作性的巨大优势。虽然国际上使用冷分子精密测量eEDM已获得重要进展,但非零的eEDM值尚未获得,同时我国也尚未在eEDM测量上取得进展,其主要原因是其探测技术复杂,对各项技术指标要求极为严苛。因此,发展eEDM精密测量实验,不仅能够作为验证标准模型外新物理的重要实验依据,更是我国开展高精度、高分辨率、高灵敏度科学技术研究的重要实验之一,具有重大的开拓性意义。进行eEDM精密测量需要理论与实验的准备,本文主要讨论制备冷分子的新方法与eEDM精密测量的新方案,目的在于搭建一套新的高灵敏度的eEDM冷分子测量系统。首先,本文提出光电存储环新方案用于减速与囚禁极性分子,尤其是非对称陀螺分子或用于eEDM精密测量的重极性分子。光电存储环由水平面沿固定圆心转动的红失谐激光束与静电四极存储环组成,并在激光焦点位置形成三维复合势阱。本文研究了分子在复合阱中的势能及运动情况,并用蒙特卡洛数值模拟的方法研究了分子在光电存储环中的减速与囚禁过程,并通过控制光束的转动来操控其三维势阱的运动。本文的研究表明光电存储环减速重极性分子所需的减速距离仅为5cm左右,同时囚禁在光电存储环中的重极性分子用于eEDM精密测量时测量时间较长,进而可以降低测量的统计不确定度,因此光电存储环是制备与操控冷分子的很好的平台。其次,本文运用有效哈密顿量方法理论计算了208Pb19F自由基的电子,振转与超精细结构。相对于其他测量分子,我们选择的208Pb19F分子具有较大的有效电场,较低的基态磁g因子,测量态为基态等综合优势。进行eEDM精密测量首先需要精确掌握其分子光谱,我们计算了无外场下A(ν=0)←X1(ν=0)各分支的跃迁光谱和外加电场下A(ν=0)←X1(ν=0)的斯塔克光谱。根据斯塔克光谱的计算结果,eEDM测量时最合适的外加电场大小为8.2 kV/cm左右。基于上述计算,本文描述了用于PbF分子eEDM测量的光学干涉仪测量方案。方案中,分子束首先进入8.2 kV/cm的电场区域,一束线偏光随后在电场区域完成叠加态的制备,接着分子进入叠加态的演化区域。叠加态演化阶段结束后信号由准连续共振增强多光子电离(pc-REMPI)技术探测。估算各种不确定度,本文认为PbF分子束的eEDM测量灵敏度可达10-30 e·cm/day1/2量级。目前最新的测量结果来自于ACME小组的ThO测量系统,de=(4.3±3.1stat±2.6syst)×10-30 e·cm(Nature,562,355(2018))。与之相比208Pb19F分子是非常有竞争力的候选分子。PbF分子复杂的能级结构导致其不适合进行激光冷却实验。因此,PbF分子eEDM精密测量的统计不确定度会受到分子在干涉仪内叠加态演化时间的限制。为了进一步优化测量灵敏度以及突破PbF分子测量eEDM遇到的瓶颈,本文提出了利用激光冷却的202Hg19F分子进行eEDM精密测量的新方案。本文首先用有效哈密顿量方法计算了HgF分子的电子,振转与超精细能级结构并用Rydberg-Klein-Rees(RKR)方法与莫尔斯势方法理论验证了HgF分子高度对角化的弗兰克-康登(FC)因子。根据计算的(3~2Σ1/2(=0,=1)转动态超精细结构,本文提出了可行的激光冷却边带调制方案。微波混合技术的使用可以让分子在准封闭跃迁循环中散射尽可能多的光子。随后,本文研究了(3~2Σ1/2(=0,=1)转动态超精细能级的塞曼效应与超精细g因子。最后估算了新方案的统计不确定度,即阱中测量的统计不确定度为6×10-32 e·cm,因此202Hg19F分子是非常有潜力的eEDM精密测量候选分子。最后,针对PbF测量eEDM实验中所需要的对PbF分子束密度进行表征的需求,本文描述了用于绝对密度测量的CELIF(腔增强激光诱导荧光)技术。首次在实验中利用CELIF技术探测了NO2(二氧化氮)气体样品的绝对密度,实验中使用的是脉冲染料激光,NO2样品的载气为氩气。实验中同时采集了CRD(腔衰荡)信号与LIF信号,CRD信号用于归一化LIF信号并确定最终测量的CELIF信号与NO2分子密度的关系。60秒的探测时间内,信噪比为3时CELIF技术下NO2的测量极限为(3.6±0.1)×10~8 cm-3。CELIF技术未来将用于PbF缓冲气体分子束分子密度的测量,测量得到的PbF分子束密度对于eEDM测量实验中计算吸收截面,设计探测系统,预估统计不确定度等极其重要。