【摘 要】
:
木制建筑自古以来便是人类生活最为常见的建筑之一,近年来随着低碳、环保、可持续发展等理念的深入人心,木制建筑越来越受人们的青睐。然而,与此同时,我们发现木制建筑火灾事故却层出不穷,危害极大。因此,降低木制建筑火灾事故发生概率及危害程度具有重要意义。解决木制建筑火灾的难点主要体现在两个方面:(1)木材易燃且燃烧时火焰蔓延速度快,潜在火灾隐患大;(2)现有的建筑火灾预警技术通常在火灾发生后才运作,预警响
【基金项目】
:
广东省自然科学基金(2019A1515011044); 广州市科技项目(201806010113); 中国科学技术大学开放课题(HZ2021-KF14);
论文部分内容阅读
木制建筑自古以来便是人类生活最为常见的建筑之一,近年来随着低碳、环保、可持续发展等理念的深入人心,木制建筑越来越受人们的青睐。然而,与此同时,我们发现木制建筑火灾事故却层出不穷,危害极大。因此,降低木制建筑火灾事故发生概率及危害程度具有重要意义。解决木制建筑火灾的难点主要体现在两个方面:(1)木材易燃且燃烧时火焰蔓延速度快,潜在火灾隐患大;(2)现有的建筑火灾预警技术通常在火灾发生后才运作,预警响应具有一定滞后性。众所周知,水凝胶是一类含水量极高且导电的绿色材料,阻燃效果显著。本文基于水凝胶高阻燃、高导电的特点将其分别应用在木材阻燃与早期火灾预警上,通过调节水凝胶组成、结构,研究并揭示组成-结构-性能三者之间的内在关系,有效提高了木制建筑的火灾安全性,为减少木制建筑火灾事故、降低其危害提供了一种新的策略和思路。主要研究工作如下:(1)为了提高木材的阻燃性能,本文以明胶和壳聚糖为原料制备了Gx-Cy水凝胶前驱体溶液涂覆在木材表面形成水凝胶阻燃涂层,通过UL-94、CCT等测试发现该水凝胶可显著提高木材阻燃性能,水凝胶在燃烧过程中不仅可以通过水分蒸发吸热,且能形成完整致密的炭层保护内部木材,使其具有更长的耐火时间和快速的自熄灭能力,点燃时间比纯木材增加了6倍,p HRR和THR分别降低了24.0%和17.2%。另外,水凝胶不影响木材固有的力学性能,且能在受损后通过局部加热方式实现自修复,废弃涂层也可被回收再利用。(2)为了实现水凝胶的早期火灾预警功能,本文采用海藻酸钠、丙烯酰胺和氯化铁制备了SA-PAM-Fe水凝胶,研究不同含水量和Fe3+浓度与各性能的关系。测试结果表明,SA-PAM-Fe水凝胶随着含水量离子浓度的增加,其温度感应灵敏度上升,在氯化铁溶液浓度为10.0%时达到顶峰,在25-90℃温度区间具有0.94%/℃灵敏度。可利用其对不同温度变化而响应的高区分度对室内温度变化进行监测,当建筑内出现异常升温时能及时发出信号,从而达到早期火灾预警的目的。另外,Fe3+会促进水凝胶脱水成炭,对其高温完整性和快速自熄灭性能有利。(3)考虑到导电水凝胶长期使用时会存在缓慢失水的问题,造成其温度感应、阻燃性能难以长期保持,通过溶液置换的方式在SA-PAM-Fe水凝胶引入丙三醇制备抗失水、抗冻水凝胶Sx,研究置换时间与各性能的关系。随着置换时间的增加,Sx温度感应性提高并在置换12h时(S12)达到峰值。S12具有良好的抗失水、抗冻性能和优异的温度感应稳定性,同时具有良好的自熄灭性能,且在经过燃烧后仍能重复使用。
其他文献
磁制冷技术作为一种无污染、全球变暖潜能值(Global Warming Potential,GWP)为零且循环效率高的新型制冷技术,是目前替代传统蒸汽压缩制冷技术最具潜力的新型制冷技术之一。目前,应用于室温环境的磁制冷技术大多采用主动回热式(Active magnetic regeneration,AMR)循环,这种循环方式存在磁热性工质轴向导热、回热损失大、运行频率低、系统管路复杂等缺陷。针对以
随着电动汽车产业的蓬勃发展,消费者对电动汽车的充电性能提出了更高的要求,但低温环境下动力电池充电效率下降、充电量少,因此电动汽车动力电池在低温环境下的充电控制策略愈发受到研究人员的重视。本课题选取18650锂离子电池作为研究对象,采用实验建模和理论分析相结合的技术路线,对车用动力锂离子电池低温快速充电控制策略进行研究。首先,分析锂离子电池的工作原理,对锂离子电池进行低温充电实验,分析电池充电过程中
超薄平板热管作为一种高效的传热元件,能有效解决受限空间内高热流密度设备的散热问题,具有广阔的应用前景。随着超薄平板热管厚度不断减薄,其传热性能恶化,为满足高热流密度设备的散热需求,开展超薄平板热管传热传质特性及强化传热研究具有重要意义。本文从理论分析、实验测试、可视化研究等方面对超薄平板热管传热传质特性进行研究,优化超薄平板热管结构尺寸设计,并将其成功应用于质子交换膜燃料电池热管理。基于导热和工质
电动汽车是绿色交通和智慧城市的有效途径,电动汽车的安全高效依赖于主要动力部件(动力电池、电机、电机控制器)的热安全性。高集成度、高能效的整车协同热管理是制约电动汽车发展的难点之一,也是国际研究热点。另一方面,电动汽车空调系统承担着向电动汽车输出冷量或热量的任务,是整车热管理系统的热动力核心部件,电动汽车热泵空调系统由于其优越的能效特性,成为下一代电动汽车空调系统的首选。如何改善热泵系统的低温制热性
作为发动机的七大板块之一,润滑系统扮演着很重要的角色,除了减小器件之间的磨损以外,它还具有清洁、冷却、密封、防锈等功能,可确保发动机的正常平稳运行。但随使用时间的推移,润滑油中会掺入各种各样的杂质,导致润滑性能逐渐降低。如果未能及时对润滑油进行更换,器件之间会产生磨损、胶合等情况,甚至产生较危险的事故。而油液的粘度可以很好地衡量润滑油的润滑性能,所以对润滑油的粘度检测研究是很有必要的。原有的测量粘
A319合金是一种高Cu含量的铸造铝硅合金,被广泛应用于汽车零件中。作为A319合金中最主要的金属间化合物,Al2Cu相特征的变化对合金的力学性能有显著影响。虽然国内外对铸造铝合金中Al2Cu相等金属间化合物进行了许多研究,但Al2Cu相的三维特征研究非常有限,空间分布均匀性等问题尚未见研究报道。此外,Al2Cu相对A319合金裂纹起源与扩展的三维原位观察与分析的研究很少。本文探讨了Al2Cu相与
在交通运输等领域中,使用轻量化合金替代传统的钢铁结构是实现节能减排的有效途径。但相比较不锈钢等传统材料,镁、铝等轻质合金更容易受到腐蚀的破坏和影响,造成安全隐患和经济损失。在轻质合金表面构建腐蚀防护涂层能够有效延缓合金的腐蚀,而在涂层中掺杂微纳片层材料则有助于进一步提升其防腐耐磨等防护性能,延长其服役寿命,提高材料安全性。本研究主要围绕绢云母这种天然二维片层材料,在经过酸化和PEI改性处理后,分别
高压共轨喷油器作为提升发动机燃烧效率的一种重要技术,因此建立相应的柱塞动力学理论、喷油理论和柱塞副泄漏理论有重要意义。针对现有研究基于一维油膜流动和单一柱塞姿态以及柱塞动力学和喷油过程独立研究建立的理论。本文具体研究如下:首先,根据喷油器的设计原理和集中容积法,并考虑喷油中的空化现象,建立柱塞动力学和喷油理论结合的数学模型,包括腔室体油压变化方程、柱塞受力平衡方程和喷油方程。得出各腔室油压变化、柱
空区稳定直接关系矿山生产安全。房柱法遗留空区承载结构主要为点状矿柱-顶板承载系统。由于地下岩体结构复杂,延伸开采过程中会形成非重叠矿柱支撑的空区。非重叠矿柱现象会增大空区承载结构荷载,导致空区承载结构岩体超过其极限强度,引发顶板冒落、矿柱滑移等事故,造成重大人员和设备损失。因此,开展非重叠矿柱支撑的延伸开采空区承载结构优化研究,对保证矿山安全生产具有十分重要的意义。论文以某地下石灰石矿山延伸开采空
建筑施工项目中,交叉作业随处可见。受限于作业空间、工期压力和成本效益等问题,交叉作业已经成为不可避免的一种作业方式。然而,以往的研究聚焦于整体施工流程中的风险辨识与评估,或是对存在冲突的作业进行调度优化的方式探索,对交叉作业的风险定量评估及管控措施分析尚缺乏系统性研究。在提高生产效率和整合作业资源的同时,交叉作业潜在的安全性问题也不容忽视。本文旨在综合运用关联规则挖掘(Association Ru