【摘 要】
:
轴系传动作为机械装置的主要动力输出形式之一,主要通过动力轴为机械装置提供扭矩,驱动设备正常工作。整个动力系统的状态和工作特性都可以通过扭矩来反映,同时可以对机械设备的整体性能做出评价,因此对于传动轴的扭矩传感就显得尤为重要。扭矩传感的常规方法包括电阻应变片法、钻孔法、压电式测量法、光纤光栅法、超声检测法和磁弹效应法等。本文对磁巴克豪森扭矩传感技术的原理进行了详尽的论述,然后提出了一种基于磁巴克豪森
论文部分内容阅读
轴系传动作为机械装置的主要动力输出形式之一,主要通过动力轴为机械装置提供扭矩,驱动设备正常工作。整个动力系统的状态和工作特性都可以通过扭矩来反映,同时可以对机械设备的整体性能做出评价,因此对于传动轴的扭矩传感就显得尤为重要。扭矩传感的常规方法包括电阻应变片法、钻孔法、压电式测量法、光纤光栅法、超声检测法和磁弹效应法等。本文对磁巴克豪森扭矩传感技术的原理进行了详尽的论述,然后提出了一种基于磁巴克豪森(Magnatic Barkehausen Noice,MBN)效应的扭矩传感方法。这种方法采用轴向应力测扭矩,采用磁巴克豪森噪声的特征值作为表征扭矩的新参数,可以实现扭矩的实时监测和非接触测量,为扭矩测量提供了一种新的思路。本文的主要工作如下:首先,从铁磁性材料的磁畴和磁滞回线的角度阐述了磁巴克豪森噪声产生的原理和产生的时机,然后介绍了MBN信号的影响因素及其作用,对MBN信号的特征值进行了分析,最后通过建立应力与磁场的等效模型和扭矩与轴向应力之间的关系,得出了基于MBN效应的扭矩传感数学模型。其次,设计了MBN效应扭矩传感的总体方案,搭建MBN特性实验的软硬件系统,包括励磁系统、检测系统、轴向励磁结构和上位机软件部分,并对励磁结构的励磁效果进行有限元仿真;实验平台采用受力均匀的悬挂式拉伸实验结构。通过拉伸特性实验,检测实验系统的性能,分析了励磁频率和励磁电压对不同材料的MBN信号的影响,并选择适合的工作点,分析实验的影响因素和灵敏度、重复性误差等指标。最后,设计基于MBN效应的扭矩测量实验的总体方案。通过大量的实验研究对实验数据进行处理和误差分析,总结扭矩实验的优缺点,以便后期的改进。实验证实了基于MBN效应的扭矩传感方案具有可行性,这种通过MBN特征值表征扭矩的方法为扭矩测量问题提供了一种新的思路和方向。
其他文献
近年来,随着深度学习和人工智能的不断发展,人脸检测和人脸识别已经被广泛应用于医疗应用、人机交互系统、机场检查等领域。目前,如何提升人脸检测和人脸识别的精度是近年来关注的热点。本论文针对提升人脸检测和人脸识别的精度,主要内容包括:1、实现了MTCNN人脸检测模型,并对MTCNN模型进行了改进。将深度可分离卷积引入MTCNN网络,将其替代传统卷积,减少卷积运算量;调整三个卷积神经网络结构的感受野,使得
人脸补全是计算机视觉和图像处理领域中的一个重要话题。它的核心任务在于还原图像信息,使生成的补全结果与真值结果尽可能保持一致。由于现有的人脸补全方法没有对补全结果与真值结果的一致性进行强有力的约束,且忽视了人脸图像的对称性特征,从而导致无法对人脸的任意部位,尤其是对称部位,生成真实自然且与真值结果一致的补全结果。除此之外,高分辨率人脸图像已经成为主体,但是现有方法大多都无法适用于高分辨率人脸图像补全
近年来中国道路交通发展迅速,交通状况愈发复杂,基于目标检测的自动驾驶技术逐渐成为研究的重点。交通标志检测作为自动驾驶领域最重要的组成部分之一,受到了社会各界的广泛关注,其中基于卷积神经网络的目标检测算法被认为是解决交通标志检测问题最有效的办法之一。交通标志对检测精度及检测速度方面均有较高的要求,以Tiny-YOLOv3为代表的轻型网络虽然满足对检测速度的要求但检测精度普遍较低;以YOLOv3为代表
气液固三相流广泛存在于自然界和工业生产过程中,对其各相分布测量具有重要意义。当前传统的流体检测方法难以针对气液固三相流的各相分布进行无损、非侵入式的在线检测。电学层析成像技术(Electrical Tomography,ET)是一种非侵入式、结构简单、成本低廉、无核素辐射的新型无损检测方法,在多相流检测领域具有广阔的应用前景。单模态的电学层析成像方法多是针对两相流的分相识别检测,当流体多于两相时,
紫外(UV)探测技术几乎不受环境背景噪声影响,在生物分析、发射器校准、空间探测等方面得到了广泛应用,而紫外光电传感器是其核心。当今,紫外光电传感器多基于单原子硅、Ⅲ族氮化物和金属氧化物材料。硅和Ⅲ族氮化物成本高、制备工艺复杂,发展受到限制。宽带隙金属氧化物半导体材料,如ZnO、SnO2等二元氧化物和Zn Ga2O4、ZnSnO3等三元氧化物,对紫外光也具有良好的UV光敏性能;且其物化性质稳定、制备
电主轴是在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,电主轴与直线电机技术、高速刀具技术一起,将高速加工推向一个新时代。作为数控机床的核心部件,电主轴的热误差的抑制对减小机床整机热误差,提高加工精度具有十分重要的意义。本文以某精密卧式加工中心电主轴为研究对象,从生散热建模、生散热功率匹配等问题进行研究,进行热主动控制实验及考虑主轴实际负载的热特性实验方面进行研究。本文分析了电主轴单元的
今年的高考结束后,每个省的成绩陆续公布,有记者采访了一些优秀学子,发现了一个现象,这些优秀学子们的家庭教育方式都有相似的地方。自高考结束以来,最火热的"学霸网红"莫过于被清华大学录取的武亦姝了,关于她的报道,点击率非常高。
超分辨率技术能够在硬件设备性能受限情况下,利用算法提高图像分辨率,恢复图像细节,获取高质量的图像。基于卷积神经网络的深度学习方法能有效提取图像内部特征,学习低分辨率图像与高分辨率图像之间的映射关系,较好地实现超分辨率重建。本文基于卷积神经网络,针对现阶段超分辨网络的效率问题进行了一系列研究,主要工作如下:针对目前基于深度学习的超分辨网络模型较深,参数量、运算量较大,无法适应于实际场景等问题。本文在
帕金森疾病(Parkinson’s Disease,PD)是由基底核网络中多巴胺的缺失导致的,会产生基底核网络异常的β振荡现象。多巴胺的缺失首先影响了纹状体的输出,继而影响了整个基底核网络的正常的生理功能。纹状体包括快速放电中间神经元(Fast Spiking Interneuron,FSI)和中间棘突神经元(Medium Spiny Neuron,MSN)两种神经元。深度脑刺激是目前治疗PD的有
近年来,移动机器人在民用、军用、商用等各个领域已经有着越来越广泛的应用。其中,由于全方位移动机器人可以独立且同时进行平移和旋转运动,所以更适合于对机动性要求高的狭窄空间,如工厂、仓库和医院。因此,如何实现全方位移动机器人精确、可靠、稳定的轨迹追踪控制已经成为机器人领域研究的热点之一。本文以全方位移动机器人为研究对象,针对机器人建模和标定参数过程复杂耗时、机器人模型存在不确定性以及存在外部扰动的问题