基于一分类算法的航空涡轴发动机故障检测方法研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:kittyangie
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空发动机作为飞机的核心构件,它的健康状况与乘客的生命安全息息相关。由于航空发动机的工作环境恶劣,经常工作在高温、高压以及高负荷运转下,导致它十分容易产生故障,并且它的结构复杂且十分精密,直接维修十分困难。随着人工智能技术的发展,将其运用到航空发动机故障检测中去,对于克服这一困难来说具有深远的影响。同时,由于航空发动机价值昂贵,故障数据获取困难,因此这里采用一分类算法进行故障检测,可以有效的解决了这个问题。本文主要是对支持向量数据描述算法进行优化,然后对涡轴发动机实施故障检测,有效提升了检测的精度,完成了预期的效果。本文主要内容如下:首先,在航空涡轴发动机全飞行包线范围内,存在启动、加速、减速、停车等多种状态,这些状态的数据在空间上会呈现多个部落聚集的情况,当采用支持向量数据描述算法时,将所有数据点都包围在同一个超球体中,并尽可能使这个超球体体积最小,这样就可能会出现将某个偏离群体的部落聚集点全部识别为异常状态,因此提出一种将K中心聚类与支持向量数据描述相结合的算法,本文将该算法命名为KMSVDD。它可以将多种状态的数据以多个的超球体包围起来,这样可以极大的避免将某个状态全部错误识别,实验结果表明该方法有效提升了算法的鲁棒性。其次,传统的支持向量数据描述算法在处理分类问题时,往往精度较低,特别是在有异常值干扰的情况下。这是因为传统的支持向量数据描述算法采用一个固定的超球体半径来设置分类边界,这意味着它倾向于强迫将所有的正常数据和异常数据都用一个固定的分界面分开,这在一定程度上是不合理的。为了减小该缺陷的影响,提出了一种动态半径支持向量数据描述算法,在本文中将其命名为DR-SVDD。该算法在判别时引入了角度的描述,对于不同的测试样本,可以选取不同的重要支持向量作为它的判别依据,实验结果表明该方法有效提升了算法的检测精度。最后,针对算法的超参数优化时间过长的缺陷,提出了一种改进的模拟人类学习行为的粒子群优化算法,本文将该算法命名为IHPSO。该算法利用当前粒子的性能指标作为Gompertz函数的输入,以达到惯性权重随迭代次数的变化而自适应改变的目的,可以有效缩短搜索时间。另外,该算法引入全局最差粒子,可以有效跳出局部最优。实验结果表明,使用IHPSO优化KMSVDD和DR-SVDD的超参数可以极大的缩短超参数训练时间,同时可以提升对发动机故障检测的精度。
其他文献
飞机穿过含有过冷水滴的云层时,飞机的机翼、尾翼、风挡等部件以及发动机进口会发生结冰现象,对飞行安全构成威胁。热气防冰是一种高效的防冰手段,目前,国内外主要针对简单的翼型开展了大量的防冰试验和数值研究,对于发动机进口部件,尤其是旋转部件,相关的防冰研究很少。由此,本文采用试验和数值模拟方法,对发动机进口旋转帽罩的热气防冰进行研究。首先,本文介绍了课题组自主开发的适用于旋转部件的、考虑水膜流动和传热的
学位
钝体稳定器作为最基本的火焰稳定器之一,广泛应用于冲压发动机和涡喷发动机加力燃烧室中。随着现代航空发动机向高推重比、高可靠性发展,加力燃烧室面临更快的来流速度与更低的来流含氧量。在这种情况下,钝体稳定器后发生不稳定燃烧的几率将大幅增加。一旦发生不稳定燃烧现象,将对航空发动机高效、稳定及安全运行带来重大隐患。因此,本文在高速贫氧来流条件下对钝体稳定器后不稳定燃烧现象展开研究。本文的主要研究内容与结论如
学位
直射式喷嘴结构简单,在航空发动机中得到了广泛的应用,国内外学者也对其进行了广泛的研究,但对直射式喷嘴的结构参数对油雾特性的影响研究较少,尤其是钝体稳定器后油雾场浓度空间分布的研究。本文研究内容包含三个部分:一是从燃油雾化测量方法、数值模拟和试验研究三个方面进行国内外现状研究,二是进行了不同喷嘴结构参数(喷孔数目、喷孔孔径、喷孔间距、喷射方向、相对位置)、气动参数(空气温度、环境压力、马赫数)和供油
学位
本文通过试验和数值模拟相结合的研究方法对带蜗壳旋流器头部燃烧室的高空点火关键技术进行优化研究。发动机在高空点火时,由于空气进口条件恶劣使得燃烧室点火变得异常困难。高空点火技术难点主要有:1)高空状态下空气含氧总量较低,初始火核生成困难;2)燃烧室进口低温空气将燃油冷却到负温状态。低温燃油难以向周围空气吸热,导致燃油的蒸发速率较低;3)低温的燃油会改变燃油物性,从而影响喷嘴的雾化性能。导致高空状态下
学位
为适应高速及低氧的极端条件,要求加力/冲压燃烧室具有更宽的点熄火边界,针对蒸发式稳定器在低温低压等极端条件下存在的煤油蒸发率低的问题,利用闪急沸腾具有蒸发速度快、蒸发率大等优势,将闪急沸腾雾化技术应用于蒸发式稳定器以拓宽在低温低压极端条件下燃烧室的点熄火极限。本文通过数值模拟与试验研究的方法,开展了航空煤油闪急沸腾喷雾特性研究及其在蒸发式值班稳定器上的应用研究,研究内容包括:研究了二维狭缝喷嘴内部
学位
当前对地观测系统中小面源定标黑体的制冷模块工作在高温密闭的环境,传统风冷、水冷等散热方式效果差,本文设计了一种相变热沉来代替传统的散热方式,对制冷模块进行温度控制,并针对石蜡导热系数低的问题对热沉内部的肋片结构进行了设计,通过实验和仿真结合的方法,得到了以下结果:(1)对热沉工作时的的底面温度和内部石蜡熔化特性进行了模拟,结果表明:熔化过程中,自然对流效应大大加快了熔化速度,并使顶部的石蜡先熔化完
学位
现代航空发动机低污染高温升的设计要求迫使燃烧组织在低油气比下进行,容易产生燃烧的不稳定等问题。导致燃烧室内产生燃烧不稳定的因素比较复杂,辨识出可能的激励源能够为抑制不稳定燃烧提供依据。本文的主要研究内容如下:1)建立模型旋流燃烧室,对不稳定燃烧激励源特征进行了实验研究。分析时域信号发现油气比改变会导致燃烧稳定性发生变化,一定程度范围内,油气比越高,燃烧越趋于稳定。2)从压力脉动信号中分解出主要的激
学位
随着航空发动机技术的发展,压气机的压比不断提高致使燃烧室进口气流温度相应提高,推重比10以上的发动机已达到900K以上;同时燃油作为重要的冷源对飞机的各子系统进行冷却,喷嘴进口的燃油温度达到甚至超过393K,两者综合作用导致喷嘴内燃油温升严重。国外研究显示燃油(JP-8)温度达到423K时,燃油管壁开始结焦沉积导致燃油雾化质量急剧恶化,严重时甚至会威胁飞机运行安全,因此喷嘴热防护是保障燃烧室可靠工
学位
在航空发动机燃烧室几何结构以及相关冷却机制的共同作用下,燃烧室出口处存在着有明显周向和径向梯度的非均匀温度场和速度场,即燃烧室出口/涡轮进口同时存在热斑和旋流。深入理解热斑和旋流共同作用对下游跨声速一级高压涡轮叶片流动和换热特性的影响对于涡轮叶片高效冷却设计具有重要意义。高压涡轮内的流动存在高雷诺数、跨声速等流动特性,因此流动和传热过程显著受到流体可压缩性的影响。数值研究跨声速状态下的涡轮流动传热
学位
高效的航空发动机故障诊断技术,可提前预警故障信息,提高飞机飞行的安全性,并且可以避免不必要的维护检测,降低飞机的维修成本。为此,本文针对航空发动机气路故障,开展基于深度卷积神经网络(DCNN)的故障诊断算法设计方法研究。首先,介绍了航空发动机故障诊断的研究意义,分析了航空发动机气路故障发生的原因,基于T-MATS工具箱的航空发动机部件级模型,生成气路故障数据并进行预处理,将数据划分为训练集与测试集
学位