论文部分内容阅读
本论文查阅了关于锅炉烟气脱硫脱硝技术研究的大量文献并进行了综述;以粉煤灰、工业石灰、添加剂为原料、制备了“富氧型”高活性吸收剂,在循环流化床(CFB)上实现了模拟烟气的同时脱硫脱硝;对吸收剂脱硫脱硝反应产物形态和微区形貌进行了分析,探讨了“富氧型”高活性吸收剂的同时脱硫脱硝机理;根据已有实验结果和机理的研究分析,建立了不同流态下的脱硫和脱硝数学模型。本研究工作对于开发相对简单、技术可靠、经济实用、有自主知识产权的新型烟气同时脱硫脱硝技术具有十分重要的意义。首次以飞灰、工业石灰、氧化性添加剂为原料,制备了“富氧型”高活性吸收剂,该吸收剂具有良好的同时脱硫脱硝性能。在固定床实验台上验证了所制备吸收剂的性能,筛选出了M、C两种氧化性添加剂;并初步研究了吸收剂的含水量、烟气温度、烟气中二氧化硫、氮氧化物浓度等重要因素对脱除效果的影响。根据固定床实验结果,放大实验条件,首次在管道喷射反应装置上进行了模拟烟气的同时脱硫脱硝实验。研究了动态实验条件下影响脱硫脱硝效率的因素,确定了管道喷射同时脱硫脱硝的最佳工艺条件。采用“富氧型”高活性吸收剂,首次在循环流化床装置(CFB)进行了烟气同时脱硫脱硝实验,探讨了影响高活性收剂脱硫脱硝效率的诸因素,确定了最佳工况条件:当Ca/(S+N)为1.2、添加剂含量为1.6%、入口烟气温度为130℃、湿度为6.58%时,C吸收剂的脱硫脱硝效率达到了93.7%和65.5%;M吸收剂的脱硫脱硝效率达到了94.5%和64.2%。实验结果表明,烟气循环流化床技术稳定,装置运行可靠,工艺简单,对工业应用具有指导意义。对吸收剂在CFB上脱硫脱硝反应产物进行了化学分析和微区形貌分析。结果显示“富氧型”高活性吸收剂颗粒表面具有多孔特性;氧化性添加剂主体元素在“富氧型”高活性吸收剂表面分布均匀;脱硫产物主要为硫酸盐,脱硝产物主要为亚硝酸盐。首次提出了CFB内主要化学反应历程和脱除机理。通过对床内流场和温度场的分析,建立了不同流态化下烟气循环流化床物理模型和温度模型。在此基础上,针对床内喷水增湿活化脱硫脱硝时高活性吸收剂的三种不同物态,建立了基于高活性吸收剂的烟气循环流化床脱硫模型,并首次建立了脱硝模型;同时利用模型模拟了各种参数对脱硫脱硝效率的影响。经实验校核模型误差在5.2%以内。与同类模型相比,该模型具有更高的精度,可用于大型工业应用的设计、计算和效率预测。