【摘 要】
:
深度估计是诸多立体视觉任务中的基础环节,在三维重建、机器人、自动驾驶等领域有较为广泛的应用。近年来,卷积神经网络的相关理论趋于成熟,在计算机视觉领域获得了瞩目成就,也为深度估计任务提供了新的解决思路。基于深度学习的深度估计任务通过理解图像的内容,对现实场景中各点的实际距离进行预测。单目深度估计受限于尺度模糊,为了提升其预测准确性,网络结构和信息线索成为解决这一任务的关键。本文从探索不同的信息线索对
论文部分内容阅读
深度估计是诸多立体视觉任务中的基础环节,在三维重建、机器人、自动驾驶等领域有较为广泛的应用。近年来,卷积神经网络的相关理论趋于成熟,在计算机视觉领域获得了瞩目成就,也为深度估计任务提供了新的解决思路。基于深度学习的深度估计任务通过理解图像的内容,对现实场景中各点的实际距离进行预测。单目深度估计受限于尺度模糊,为了提升其预测准确性,网络结构和信息线索成为解决这一任务的关键。本文从探索不同的信息线索对深度估计任务的有效性这一角度出发,提出了两种算法,通过使用合理的网络结构、融合不同的线索信息对基于深度学习的深度估计算法性能进行改进。这两种算法涵盖了多个方面,在类型上包括有监督算法和无监督算法,在数据形式上包括绝对深度和相对深度。第一部分,本文提出了基于语义信息先验的深度估计算法。该算法使用语义分割的结果作为先验信息,再对特定的语义范围进行深度预测。该算法将复杂的场景简单化,避免了直接对分布范围广泛的数值的回归,有效的提升了深度估计算法的准确性。考虑到数据集场景单一,导致算法泛化性能较差。针对该问题,本文进行了泛化性能方面的改进,使用了一种统一的相对深度数据表达方式和多数据集训练策略,使不同数据形式的深度真值可以使用统一的框架进行训练。改进后的算法在预测结果的准确性和泛化性能方面都具有较好的表现。第二部分,由于目前的深度真值不理想,以及现有的无监督深度估计算法未能有效的利用视频数据进行训练,本文提出了一种全新的基于时序信息的无监督深度估计算法。该算法使用卷积神经网络,对匹配点在不同拍摄位置深度值的变化规律进行建模,根据该规律可对任意时刻的深度值进行预测。时序信息有效的提升了无监督深度估计算法的准确性,且在训练过程中避免了使用真值进行监督。本文提出的两个算法在深度估计领域的多个大型公开数据集上进行了验证。实验结果表明,本文通过分别融合语义、时序两种线索信息,有效的提升了基于深度学习的深度估计算法的性能。
其他文献
相关统计数据显示,世界范围内宫颈癌的发病率在女性恶性肿瘤中排名第四位,早期筛查,对于降低宫颈癌发病率和死亡率,挽救患者的生命,具有重要意义。目前,宫颈癌的早期筛查主要依靠人工进行。病理医生需要在一张包含数千个宫颈细胞的涂片上通过肉眼观察,寻找癌变细胞。在大型医院中,病理医生每天要处理上百个类似的细胞涂片,存在较大的漏诊风险。针对该问题,本文提出了新的宫颈癌细胞识别方法,建立了包括75个特征的多参量
目的:探讨组织因子途径抑制物2(TFPI-2)对心房成纤维细胞和心房肌细胞功能的影响及相关分子机制。方法:采用ELISA法检测15例心房颤动(AF)患者和15名正常对照血清TFPI-2水平。分离、培养并鉴定SD乳鼠心房成纤维细胞和心房肌细胞。通过CCK-8实验检测0、50、100、200μg/L重组TFPI-2蛋白(rTFPI-2)处理24、48 h对心房成纤维细胞增殖能力的影响。采用Transw
行人再识别是计算机视觉领域的重要任务之一。通过给定一张特定行人的图片,行人再识别技术可以在图库或视频中查找到同一行人的其他图片,从而达到识别行人、检索行人的目的。随着监控摄像头的普及、智能城市的建立以及社会安全的需求,行人再识别技术获得越来越多的重视,因此行人再识别问题的研究有着重大意义。目前流行的有监督行人再识别技术已经取得了巨大的进展,在一些公开数据集上达到不错的性能。但是,这些方法却很难应用
个性化的头部解剖结构数字模型在面部外科手术、头部电磁学和生物力学仿真、人体艺术建模等诸多领域有着重要应用价值。在不方便使用断层扫描影像设备头部影像的情况下,使用面部照片引导个性化头部建模成为一个值得研究的替代解决方案。本研究以课题组开发的可变形中国人群数字解剖图谱为基础,实现三维图谱与二维正面照片的配准,得到对受试者头部及其内部解剖结构的个性化三维建模。本文的主要内容可以分为以下三个部分:(1)基
图像作为重要的信息载体,其质量的高低直接影响了信息表达的能力,因此图像超分辨率技术凭借其恢复高质量图像的强大能力在许多领域有着广泛应用。相较于传统二维图像,光场图像满足了人们对高维信息的需求。但是,主流光场相机捕获的光场图像始终存在空间分辨率和角度分辨率的权衡,面临着图像分辨率不足的问题。深度线索在光场超分辨重建中有着重要作用,但是现有工作大多关注如何利用深度线索,而忽略了对深度线索的深入挖掘与精
近几十年来,随着计算机和电子科学技术的飞速发展,涌现了许多先进的电子产品,例如智能手机,数码相机等。这些设备提供了快速记录信息的机会,已经逐渐成为人们日常生活中必不可少的组成部分。但是,当使用数码相机拍摄数字屏幕时,照片中会出现令人反感的摩尔纹。摩尔纹的存在严重损害了图像的质量,并且还会影响到后续的分析和处理。摩尔纹去除是图像恢复任务的一种,旨在最大程度的恢复被摩尔纹污染的屏摄照片。由于摩尔纹广泛
如今社会上出现各种各样先进的产品和技术,如高性能的智能手机、各种新颖的图像编辑APP和常用的社交APP等。这些APP的出现和流行让图像的拍摄、编辑和传播变得方便,也使网络上充斥着各种真真假假的数字图像。由此可见,高科技的发展作为一把双刃剑,在丰富便利生活的同时,也使数字图像的可信度逐渐降低,会有不法分子为实现自己目的而恶意篡改图像。为了进一步保证数字图像的可信度,研究者提出了被动数字图像取证技术,
骨关节炎(Osteoarthritis,OA)是最常见的退行性关节疾病,其特征是关节软骨的进行性退化和软骨下骨的重塑以及骨赘的形成,临床上引起关节疼痛、功能障碍,甚至残疾。关节软骨细胞外基质(Extracellular Matrix,ECM)分解代谢的增加是OA发生发展的关键因素。ECM的主要成分是蛋白聚糖、Ⅱ型胶原和非胶原蛋白,其在合成或降解过程中一些特定的碎片得以释放到体循环中。随着分子
在海上目标检测的过程中,基于人工智能的目标检测已经成为必不可少的重要实现工具。在宽阔的水域或者港口码头,无论密集的聚集还是松散的分布,都需要对船舶快速地检测和定位,进一步有分类以及分割的实际需求,对目标检测稳定高效性的要求也越来越高。本文的主要研究内容为改进YOLOv3目标检测算法的网络结构,以期提升网络的准确率和召回率。本文以水上船舶图像作为研究对象,进行深度学习神经网络模型研究、船舶图像增强研
近些年,随着国家法制建设的推进,如何通过信息抽取技术从海量司法文书中获取有用信息,助力于“智慧司法”建设,已成为自然语言处理领域中的研究热点。其中,关系抽取作为司法信息抽取技术中的关键技术之一,不仅能够帮助办案人员进行案件要素的关系梳理,提高办案效率,还可为司法问答、司法推理、司法知识图谱构建提供重要的技术支持,因此,其研究意义重大。然而由于司法文本的复杂性和特殊性,导致各罪名案件间的关系诉求存在