【摘 要】
:
弯头和弯管在物料高速冲刷和腐蚀作用下会产生缺陷,缺陷的存在会影响弯头的承载能力,降低其运行的安全性和可靠性。准确预测含缺陷弯头和弯管的爆破压力,可以在发挥其承载能力的同时保证其安全性。本文以局部减薄缺陷弯头为研究对象,采用显式非线性有限元模拟和支持向量机计算方法,对其进行了爆破压力预测研究,主要研究内容包括以下几个方面:首先,利用液压设备完成了无缺陷弯头水压爆破实验,得到无缺陷弯头的爆破压力与失效
【基金项目】
:
河北省高等学校自然科学计划重点项目(ZD2017022); 河北省市场监督管理局项目(2018ZD13 2020ZC26); 河北省特种设备监督检验研究院科技计划项目(HBTJ2021CY003);
论文部分内容阅读
弯头和弯管在物料高速冲刷和腐蚀作用下会产生缺陷,缺陷的存在会影响弯头的承载能力,降低其运行的安全性和可靠性。准确预测含缺陷弯头和弯管的爆破压力,可以在发挥其承载能力的同时保证其安全性。本文以局部减薄缺陷弯头为研究对象,采用显式非线性有限元模拟和支持向量机计算方法,对其进行了爆破压力预测研究,主要研究内容包括以下几个方面:首先,利用液压设备完成了无缺陷弯头水压爆破实验,得到无缺陷弯头的爆破压力与失效位置,运用拉伸试验机得到弯头材料的工程应力应变曲线,采用HYPERMESH和显式非线性有限元软件LS-DYNA进行了数值仿真,并进行了数值模拟结果与实验结果的比对,验证了显式非线性有限元软件LS-DYNA的准确性与可行性。其次,基于LS-DYNA和HYPERMESH建立了内拱处含单局部减薄缺陷和双局部减薄缺陷弯头爆破压力预测的显式非线性有限元模型,采用等效塑性应变失效作为弯头的失效准则,研究了单局部减薄缺陷时缺陷尺寸对弯头爆破压力的影响;并分析了双局部减薄缺陷间间距对弯头爆破压力的影响,并给出了双局部减薄缺陷间的相互作用准则。再次,通过支持向量机,随机选取显式非线性有限元法得到的数据对小样本预测模型进行样本训练和测试,得到了预测模型来预测单局部减薄缺陷弯头以及双局部减薄缺陷弯头的爆破压力,验证了其精度较高,具有良好的可行性。最后,采用集中力的形式来模拟弯头所受附加弯矩,针对于局部减薄缺陷弯头,分析了内压与面内弯矩的共同作用下,弯头的爆破压力变化情况。研究结果表明,闭弯与内压共同作用下的影响大于开弯与内压共同作用下的影响,单局部减薄缺陷的爆破规律与双局部减薄缺陷的规律相一致。
其他文献
近年来,封闭几何形状和K24弹性项对液晶结构产生的影响一直是人们研究的热点。K24的潜在作用很难完全被表征,同时使用经典的Frank理论来探索系统的精细结构仍然是困难的。因此研究K24诱导的精细结构是很有意义的。本文基于Javadi A[42]等人研究的基础上,主要采用Landau-de Gennes理论和差分迭代法研究了在两个界面均具有沿面简并锚定边界条件下的圆筒形系统中向列相液晶的手性结构。K
上皮间质转化(epithelial-mesenchymal transition,EMT)对肿瘤细胞迁移非常重要。通过EMT,肿瘤细胞由上皮表型转化为间质表型,从而更易发生转移。EMT的发生受微环境中基质细胞调控。被肿瘤招募的基质细胞会分泌一系列细胞因子作用于肿瘤细胞的EMT核心基因调控网络,进而调控肿瘤的EMT。本文就近年来基质细胞调节的EMT在肿瘤浸润转移中的作用加以综述,讨论各种基质细胞分泌
金莲花多为野生资源,近年来随着其自身的药用及观赏价值得到不断地发掘,金莲花需求量大量增加,导致野生金莲花资源遭到了严重的破坏。因此,研究金莲花的产量、品质及环境适应性,揭示活性成分黄酮类化合物合成的相关途径,设计高效分子改良育种策略,创制高产、优质、广适性的金莲花优良品系,具有重要的研究价值。本研究以不同剂量的氮离子辐射金莲花种子,发现较低的辐射剂量能在一定程度上使种子发芽率和发芽势有所增加,当剂
高直链玉米淀粉(HAMS)具有独特的结晶结构、热性能以及优良的力学特性,使得其在低升糖食品、活性成分包埋以及可降解材料领域具有广阔的应用前景。用HAMS颗粒构建Pickering乳液是食品化学的研究热点,但其亲水性强、冷水溶解度差等缺陷,严重阻碍了其加工和应用。因此,本文从HAMS分子结构特性出发,尝试在乙醇溶剂热环境中对HAMS进行酯化改性,通过固相机械研磨、乙醇溶胀等方法提高HAMS冷水可溶性
锂离子电池(LIBs)由于高比能量、高效率和高稳定性等优势在大规模储能、电动汽车和数码产品中得到广泛应用。应用领域的快速发展也对LIBs的电化学性能提出了更高的要求,特别是对能量密度和温度适应性等。电池性能主要取决于正负极材料的性能。相比于正极材料,商业化负极材料选择更少、性能更差。因此,设计合成新型的高性能负极材料是提升锂离子电池性能的关键。本论文设计并合成了一系列聚阴离子型钼酸盐和钨酸盐负极材
P53是重要的肿瘤抑制因子,在人体中主要受MDM2基因调控,并形成复杂的抑癌基因网络。在超过50%以上的癌症患者中均出现了p53基因突变以及其网络功能的丧失,这促使p53基因网络研究成为如今肿瘤研究的热点之一。其中针对p53信号通路通过药物联合以协同作用的方式治疗肿瘤受到广泛关注,该方式具有降低药物毒性、降低耐药性、增强治疗效果的作用。Nutlin-3是一种重要的抑癌小分子,它在联合用药治疗肿瘤临
肺癌是威胁人类健康的重大疾病之一。钙激活的氯离子通道(Ca CCs)广泛分布在多种组织中,参与众多生理过程。现已确定TMEM16A为Ca CCs的分子基础。TMEM16A功能异常与包括癌症在内多种疾病密切相关。重要的是,TMEM16A表达和功能的下调显著抑制多种癌细胞的增殖,迁移,侵袭和凋亡,因此TMEM16A可作为肺癌的药物靶标。离子通道的药理阻断是一种具有显著潜力的抗肿瘤治疗方法。越来越多的证
液晶分子的取向排列一直以来都是液晶物理学研究的热点之一。胆甾相是液晶分子形成的一种单轴螺旋结构的液晶相。胆甾相液晶的螺旋结构导致了折射率的周期性调制,使得胆甾相液晶被广泛应用于多个领域。胆甾相液晶在双稳态上的研究已经取得了杰出的进展,对于如何形成稳定良好的胆甾相液晶ULH(uniform lying helix)结构以便缩短液晶的响应时间,有待进一步研究。电场作用、挠曲电效应、弹性各向异性、锚定作
高选择性U(Ⅵ)富集新材料的开发对于U(Ⅵ)的污染治理和海水提铀的发展具有重要意义。为了探索不同官能团在U(Ⅵ)吸附中的作用,采用改良Hummers法制备氧化石墨烯(GO),在此基础上通过等离子接枝技术制备含氧(呋喃)、含氮(吡咯和苯胺)和含硫(噻吩)官能团化氧化石墨烯,即呋喃/GO(FGO)、吡咯/GO(PGO)、苯胺/GO(AGO)和噻吩/GO(TGO)复合吸附材料。比较未加工的GO和官能团化
近年来,以光热材料为核心的光热疗法作为一种无侵入性、特异性强的替代疗法,在癌症治疗等领域表现出了巨大的优势。目前,光热材料的研究主要集中在促光谱红移、增加量子产率和光吸收系数、提高材料水溶性、生物功能性修饰等方面。与无机光热材料和小分子光敏剂相比,有机共轭分子具有高生物相容性、高消光系数和热转换量子效率等优势,在光热治疗领域具有巨大的应用潜力。此外,有机共轭分子的水溶性、生物相容性等性质有望通过纳