【摘 要】
:
超导重力梯度仪因其固有噪声低、标度因子稳定,被广泛认为是最有前途的下一代高分辨率航空重力梯度测量仪器之一。在航空环境下,平台水平线运动导致的交叉耦合噪声是其主导噪声之一,但由于缺乏高精度的交叉耦合系数测量装置,国内外抑制该噪声的研究长期处于停滞状态,超导重力梯度仪也一直未达到实用的技术水平。本文依托“精密重力测量国家重大科技基础设施”平台,开展了高精度交叉耦合测试装置的研制,为超导重力梯度仪交叉耦
论文部分内容阅读
超导重力梯度仪因其固有噪声低、标度因子稳定,被广泛认为是最有前途的下一代高分辨率航空重力梯度测量仪器之一。在航空环境下,平台水平线运动导致的交叉耦合噪声是其主导噪声之一,但由于缺乏高精度的交叉耦合系数测量装置,国内外抑制该噪声的研究长期处于停滞状态,超导重力梯度仪也一直未达到实用的技术水平。本文依托“精密重力测量国家重大科技基础设施”平台,开展了高精度交叉耦合测试装置的研制,为超导重力梯度仪交叉耦合噪声的抑制研究奠定硬件基础。为超导重力梯度仪敏感探头提供纯净水平线加速度调制信号的水平激振装置是交叉耦合测试装置的核心,其研制也是本文的重点攻关内容。根据超导重力梯度仪的工作特征,提出了将水平激振装置镶嵌于液氦杜瓦的真空腔内的技术方案。该装置由悬挂结构和驱动单元构成。对多种悬挂方式进行详细的对比分析后,确定了四簧片连接的悬挂结构,在优化参数下,该结构具备优异的抑制非测试自由度同频伴生运动的能力。提出了载流超导线圈与永磁体相互作用的零热量驱动方式,并通过优化结构与布局有效降低了激励力的非线性以及电磁驱动在测试空间的磁场污染。为了保证装置的测试精度,在结构设计基础上,通过理论建模与仿真相结合的方法,对影响该装置性能的噪声与误差进行了系统的分析,据此给出了装置制作与安装的精度需求。最终测试结果表明,水平激振装置可以在驱动自由度上产生谐波失真度低于0.2%,幅值大于0.1 m/s~2@1Hz的调制加速度,且具备较强的抑制非驱动自由度同频伴生运动的能力。在1 Hz处的同频垂向线加速度幅值(az)以及倾斜角加速度幅值(αx和αy)与实际驱动水平加速度幅值(ax)的比值分别1.4×10-4、4.7×10-4 rad/m和2.8×10-4 rad/m。在该性能参数下,单自由度水平激振装置具备1.8×10-8 rad的交叉耦合系数测试精度。为了测试方便,本文进一步研制了一套两自由度水平激振装置,该装置可在同一次低温试验内完成两个正交水平线运动交叉耦合系数的测试。测试评估结果表明,两自由度水平激振装置在x和y方向的交叉耦合系数测试能力分别为1.5×10-7 rad和4.3×10-7 rad,精度略低于单自由度装置,测量精度受限于加工安装精度。水平激振装置常温测试成功后,本文在液氮温度下对激振装置的功能进行了测试。在没有商业低温运动传感器可配置的情况下,本文提出了利用两自由度激振装置中未使用的一个水平自由度的驱动线圈来感知另一个水平线加速度的技术方法,并成功地应用于低温试验中。低温试验结果表明激振装置能在低温下正常工作。最后,设计定制了与激振装置配套的低温系统,包括低温液氦杜瓦和磁屏蔽结构,为后续开展超导重力梯度仪的交叉耦合噪声抑制工作提供必备的低温和低磁场干扰工作环境。
其他文献
核磁共振能够无损地精准获取物质组成和结构信息,是一种重要的物质分析技术。基于感应线圈的核磁共振谱仪的信噪比正比于γ5/2B03/2,工作磁场强度越高,则核磁共振信号的信噪比越高。因此,传统的核磁共振谱仪通常采用超导磁体产生强的工作磁场。然而,基于超导磁体的高场核磁共振波谱仪存在体积大、成本高、匀场难等问题,特别是匀场难,限制了核磁共振谱的频谱测量精度的提高。超低场核磁共振的工作磁场在超低场(<10
静电加速度计具有极高的分辨率,并且可实现六自由度加速度同步测量,在重力卫星,空间引力波探测等高精度空间实验中发挥重要作用。在地面对静电加速度计的性能进行直接测试与验证,对于提升其可靠性具有重要的意义。基于高压悬浮的地面测试方案能实现加速度计检验质量的六自由度同时控制,对待测样机改动相对较小,适合对工程样机整机进行检验。然而在该方案中,水平方向的地面振动噪声会直接耦合进入加速度计,影响测试结果。基于
晶体与电磁场之间相互作用的研究是固体物理领域极具吸引力的课题之一。强度不同的电磁场会在晶体内部诱导产生不同的物理现象。在过去几十年中,人们尽管对于弱激光场与晶体的相互作用进行了大量的研究,并取得了显著的成果,但是对于强激光场与晶体相互作用的研究仍存在很多亟需解决的问题。近年来,得益于飞秒激光技术的发展与成熟,非线性光学应用等得到了快速发展,认识和理解晶体尤其是半导体内的强场过程则变得尤为重要。半导
硅基MEMS加速度计在消费电子、惯性导航和地球资源勘探中都有很广泛的应用。国内外各大研究机构都对其展开了深入的研究,相继提出了不同类型的MEMS加速度计,其中电容检测式MEMS加速度计发展最为迅速。在加速度计的设计、加工、可靠性、测试以及应用等技术中,加速度计的封装技术是其重要的技术环节。无论是从消费电子需求的低成本和批量化,还是惯性导航和资源勘探需求的加速度计的一致性,圆片级封装都是必须要解决的
第一部分基于转录组测序技术的综合生物信息学分析揭示髌骨不稳相关的关键基因和通路目的:髌骨不稳是一种青少年常见的膝关节损伤,然而到目前为止,其关键的生物标志物和分子机制仍不清楚。本研究目的为通过转录组基因测序技术比较髌骨不稳和对照组小鼠之间的全基因表达差异,发现参与髌骨不稳发生发展的显著差异基因,并通过综合生物信息学分析确定了髌骨不稳中的分子机制和关键基因,以揭示髌骨不稳的确切机制并开发一种新的非手
血脂紊乱作为一种常见的代谢性疾病,与动脉粥样硬化性心血管疾病(arteriosclerotic cardiovascular disease,ASCVD)的发生发展密切相关。在临床工作中,即使对于心血管疾病的危险因素进行积极控制,仍会有部分患者出现大血管或微血管疾病,这就是所谓的心血管剩留风险。这种心血管剩留风险主要与高TG血症有关,通过有效的手段降低TG水平则可以极大的减少心血管疾病的患病风险。
核酸是构成细胞的基本物质之一,其基本单元是核苷酸。核酸作为遗传信息的载体,在信息的存储和传递过程中行使着关键功能,对生物的生成、发育和繁殖等活动有着至关重要的作用。对核酸的研究是当前对生命科学研究的一个重要分支,其中,有一类核酸可以作为药物靶标,例如核糖开关,与配体结合,从而调节基因表达,激活/失活生物学功能。那么就有必要研究核酸–配体相互作用,从而加深对核酸功能的理解。结构决定功能,但由于实验方
以硅基半导体为核心的信息技术革命,在短短半个多世纪里就彻底改变了人类的生活方式。随着现代化集成电路规模的日益增大,常规半导体材料的性能已经越来越接近其工艺极限。为了延续摩尔定律的有效性,使电子器件的集成度和性能继续保持指数型增长,势必要发展全新的功能材料。具有范德华层状结构的二维材料的出现,为当代的信息产业带来了曙光。二维材料的低维度特性,允许从电路上对其进行高密度集成。在传统的三维材料中,铁电序
越来越多的研究表明,RNA(核糖核酸)除了传递遗传信息和参与蛋白质的合成外,还参与很多重要的生物学过程,而且还存在着大量功能未知的RNA分子。RNA分子的功能不仅依赖于它的序列还依赖于它的三维空间结构,因此,要深入理解RNA功能需要确定它们的三维空间结构。确定RNA的结构在实验上主要采用X射线晶体衍射、核磁共振和冷冻电镜等技术,但由于RNA的不稳定性,目前通过实验直接测定出的RNA三维结构的数目十
人工神经导管(nerve guidance conduits, NGCs)作为一种合成的神经移植物,为神经再生提供结构与营养支持。理想的神经导管对生物相容性、机械强度、拓扑结构和导电性等均有较高要求,因此需对神经导管的设计不断改进并建立更完善的周围神经再生策略,以期满足临床需求。虽然NGCs在周围神经损伤的治疗中已经取得一定进展,但其对长距离神经离断伤的结构与功能修复仍不理想。本文分别从原材料选择