基于图和深度神经网络的会话推荐算法设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:guojade_2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于会话的推荐系统作为一种有效的技术手段可以帮助用户发现与其当前会话中兴趣相关的物品。与传统推荐系统相比,会话推荐由于能够仅根据在进行的会话期间观察到的用户行为来进行推荐而具有高度实用性,受到研究者的广泛关注。当前研究主要将基于会话的推荐任务建模为根据现有点击序列数据预测用户的下一次点击问题,主要采用基于深度神经网络和表示学习的方法,利用会话中的物品点击序列提取与用户兴趣相关的特征,生成用户最可能点击物品的推荐列表。本论文对现有主流相关工作进行分析归纳发现,当前主流会话推荐方法存在一些问题:第一,会话中的用户兴趣具有多样且多变的特点,导致当前主流的神经网络模型对用户兴趣及变化建模不足,影响推荐准确性;第二,当前研究工作聚焦于如何有效建模会话中的用户行为特征和设计更准确的用户兴趣捕获方法,忽略了物品表达向量蕴含的信息对模型的影响,缺乏对物品本身信息和物品间复杂关联关系的利用,制约了会话推荐算法性能的进一步提高。针对上述问题,本文以用户匿名的会话推荐任务为研究对象,并分别提出两个会话推荐算法。首先,针对现实生活中人类浏览行为的特点,提出一个短期注意力及记忆优先的会话推荐算法,在推荐时优先考虑会话中用户的当前兴趣,同时设计了一种注意力机制以有效同时捕获会话中与用户长期兴趣和当前兴趣相关的特征,缓解了当前会话推荐算法难以处理的用户兴趣漂移等问题对推荐准确性的影响。同时,总结当前基于深度神经网络的会话推荐算法使用随机初始化的物品表达的缺陷,创新性的根据全部会话数据构造一个物品访问频率和顺序关系图,据此设计了一个基于图的物品表示学习方法,通过简洁高效的语义合成方式学习物品在全局层面的热门程度和物品间丰富的复杂关联信息。最后,将从图中预先学习的物品固定向量表达作为推荐模型的输入,提出一种基于图表示学习的会话推荐算法。该算法引入全局层面的物品本身受关注度和物品间复杂关联信息,同时在建模会话序列时还融合了包含会话整体特点的用户长期行为和包含用户初始兴趣与当前兴趣的短期行为信息,以此提高会话推荐算法整体性能。在三个真实公开数据集上的一系列实验结果表明,所提出的会话推荐算法整体性能均达到当前先进水平,另外,将学到的物品固定表达作为推荐模型的输入,能有效提高会话推荐算法在真实场景下的适应能力,也为会话推荐研究提供给了新的思路和建模方式。
其他文献
自2012年Google正式提出知识图谱概念以来,知识图谱已经在智能问答系统、推荐系统、垂直搜索服务、辅助决策系统等多个领域展现出丰富的实际应用价值,受到工业界和学术界的广泛关注。但目前知识图谱依旧面临着人工构建成本高、数据稀疏、信息不完善等缺陷,极大限制了知识图谱的应用能力。目前,如何对知识图谱进行高效的表示与推理依旧是研究工作的重点和难点。本论文针对现有研究方法对知识图谱图结构信息利用效率低、
数据集成是信息检索领域的一个关键性任务。其中,实体统一任务是数据集成的一个关键步骤,也称为实体匹配或重复记录检测。实体统一任务指的是,在不同来源的数据中,找出指向同一现实世界中的实体的数据记录。早期的研究主要是基于字符串距离的算法。这种无监督的方法缺乏有效性和泛化性,因为预定义的匹配阈值通常随着数据集的变化而变化,需要人工为不同的数据集设定阈值,缺乏泛化性。另一条研究分支是基于众包的实体统一算法。
随着大数据时代的到来,指数级增长的数据量使得人们淹没在数据文海之中,如何能在浩如烟海的文本之中提炼所需要的信息变得格外重要。自动文本摘要是指利用概率统计、机器学习、深度学习、神经网络等,从文本中提取主旨信息,挖掘关键信息,将文本的主要信息凝缩成简洁表示的摘要。目前在新闻标题生成、文本检索、知识问答等方面得到广泛应用。序列到序列模型是自然语言处理中用途最广泛的模型,一般由编码器和解码器两大部分构成。
近些年来,许多高维数据在不同的领域中产生。这些高维数据不易用传统方法处理,但迫切需要从这些数据中分析潜在的信息和模式。但是现在的机器学习模型更多地采用矩阵形式,这样会使得我们处理数据需要对数据特征进行向量化处理。对于多元之间的的信息融合和共享,采用矩阵运算表示会很复杂,而张量多线性表示其本身是更加自然的描述。描述张量多线性操作的图示,即张量网络由于其表达的便捷性,现在越来越流行。因为很多低秩的张量
任务规划技术在现实生活中应用十分广泛。任务规划算法通常在给定有限的子任务空间下进行子任务安排,进而得到一条可以满足业务需求的任务流程。目前,基于开放性空间的任务规划求解问题成为研究热点。但这类方法因开放性解空间的原因,对于交互性和动态调整性提出了需求,用户需要在任务规划阶段交互式参与解决方案的调整。为此,论文以代码模块组合任务规划为典型场景,将代码模块组合任务规划分解为代码搜索与代码组合两部分,解
随着信息科学技术的发展,图像已经深入人们生活的方方面面,图像中的内容也越来越复杂。多标签分类比单标签分类更能准确的描述图像中的内容,因而得到广大研究者的关注,并成功应用在智能管理相册、自动驾驶、广告推荐和视频监控等领域中。为了进一步提高多标签图像分类的效果,本文提出了基于语义空间注意力机制的多标签图像分类模型和基于语义通道注意力机制的高分辨率分类模型,具体的研究内容如下:(1)提出了基于语义空间注
强化学习作为机器学习领域的重要分支之一,是一种通过在环境中不断试错从而得到最优策略的方法。而得益于深度学习近年来的发展,结合强化学习与深度学习所形成的深度强化学习成为了一个热门的研究领域,并在许多问题上取得了突破性的进展。在深度强化学习算法中,异策略强化学习算法凭借其对样本数据极高的利用率在部分问题上具有显著优势。但是由于真实环境中的控制问题往往极其复杂,获得经验样本的成本非常昂贵,而且现有强化学
近年来,人工智能领域蓬勃发展,同时也存在一些问题和挑战。其中,数据孤岛,用户隐私保护导致的数据割裂问题尤为受到人们的重视。在各行业中,不同机构,同一机构不同部门的数据通常存在屏障,不能被直接共享或交换,表现为数据以“孤岛”的形式存在,这使得大数据驱动的人工智能技术难以充分发挥价值。此外,随着国内外数据隐私保护法规的不断完善,对企业在用户数据的收集、存储和使用环节中提出了高的用户隐私保护要求,这提高
伴随着无线设备的快速发展,现如今越来越多的车辆都配备有大量的无线设备,使利用大规模的车载网络成为了可能,因此,工业界和学术界对车载自组织网络(VANETs)产生了极大地兴趣。车载网络通常会因为车辆的行驶速度快,网络节点间的拓扑结构变化频繁,以及车载无线设备带宽低等问题,导致网络质量不佳。本文采取的解决方案是,利用路侧停放的车辆,将路侧停车加入车辆网络,利用停放的车辆中的无线设备进行网络的数据分发,
针对人工智能实际应用环境中的数据孤岛效应和数据隐私保护,联邦学习框架应运而生。本文研究了基于卷积神经网络的联邦学习算法,主要包括:(a)针对个性化,研究了联邦学习的框架下多个客户端联合训练,最终为每个客户端学习其对应的个性化模型;(b)针对通信瓶颈,研究了联邦学习中的通信压缩。具体的主要研究内容如下:(1)本文提出了基于子类个性化的联邦学习算法(Subclass Personalized Fede