论文部分内容阅读
变风量空调系统(Variable Air Volume Air Conditioning System,VAVACS)是保持送风温度恒定,通过改变送入室内的冷、热送风量,进而满足对室内温度控制的要求。相比于传统的定风量空调系统(Constant Air Volume Air Conditioning System,CAVACS),因其可以明显地降低风机能耗和实现分区域温度控制的优势,VAVACS被广泛的应用于现代公共建筑当中。然而,由于VAVACS的多参数、非线性且其主要控制回路之间存在强耦合的特性,当其在运行时往往会出现不同控制回路之间相互干扰的问题,造成系统的不稳定运行和降低控制系统的控制品质。鉴于此,结合多变量解耦控制理论、模糊控制算法和单神经元自适应PID控制技术,通过对VAVACS耦合严重的三个控制回路进行分析,本文提出了VAVACS三参数前馈解耦自适应PID控制策略和一种改进的单神经元PID算法(Modified Single Neuron PID Algorithm,MSNPIDA)对自适应PID控制器参数进行整定的研究思路。同时,借助于MATLAB软件,分别对MSNPIDA和VAVACS的三参数前馈解耦自适应PID控制系统进行了编程和组态,且仿真运行。本文研究内容主要包括:1.通过对VAVACS的3个主要参数控制回路的机理分析,分别建立了冷(热)水流量QCW/HW-送风温度TSA、送风机转速n1-送风静压PSA和室内送风量QSA-空调房间温度或室温Tn的数学模型。并基于矩阵分析法,构建了这3个控制回路的耦合传递函数矩阵表达式。2.基于前馈补偿方法,构建了解耦补偿器的传递函数矩阵,以消除这3个控制回路之间的耦合效应。借助于MATLAB软件中的多变量频域设计工具箱(Multivariable Frequency Design Toolbox,MFDT),对VAVACS三参数前馈解耦控制系统进行了单位阶跃响应分析的仿真。结果表明,本文所设计的前馈解耦补偿器能够实现消除这3个控制回路之间的耦合效应。3.该MSNPIDA是基于送风温度TSA、送风静压PSA和室温Tn的误差及误差变化率和模糊运算规则,通过调节单神经元的神经网络权值ωi(i=1,2,3)和增益系数λ的大小,对相应的3个自适应PID控制器的参数KP*、KI*和KD*进行自适应整定,并获取相应的最佳值。同时,借助于MATLAB软件,对该MSNPIDA进行了编程和功能模块封装。通过对经典函数的验算和水箱液位实验的验证,表明该MSNPIDA是合理且可行的。4.借助MATLAB/Simulink工具,对基于MSNPIDA的VAVACS三参数前馈解耦自适应PID控制系统进行了组态,且数值仿真了空调冬、夏季工况的运行状况。结果表明,相应的送风温度TSA、送风静压PSA和室温Tn的控制指标能够满足空调工艺的相关要求,且跟踪性能和抗干扰能力良好。5.类似的,分别对基于MSNPIDA的VAVACS三参数非解耦自适应PID控制系统和VAVACS三参数解耦传统PID控制系统进行了组态和数值模拟了它们在空调夏季工况下的运行情况。基于结果分析,可看出本文提出的基于MSNPIDA的VAVACS三参数前馈解耦自适应PID控制方式相比于其它两种控制方式,其控制性能是明显占优的。