【摘 要】
:
随着5G网络全球化部署进程不断提速,各行各业提出运行在用户设备(User Equipment,UE)上的计算密集型和时延敏感型的新型应用。虽然移动云计算(Mobile Cloud Computing,MCC)把高计算任务通过公用网络上传到集中式的云服务器上增强了UE的计算和降低UE的能耗,但是云服务器在空间上远离UE导致传输数据需要花费更高的时延。移动边缘计算(Mobile Edge Comput
论文部分内容阅读
随着5G网络全球化部署进程不断提速,各行各业提出运行在用户设备(User Equipment,UE)上的计算密集型和时延敏感型的新型应用。虽然移动云计算(Mobile Cloud Computing,MCC)把高计算任务通过公用网络上传到集中式的云服务器上增强了UE的计算和降低UE的能耗,但是云服务器在空间上远离UE导致传输数据需要花费更高的时延。移动边缘计算(Mobile Edge Computing,MEC)将计算和存储资源传输到移动网络的边缘,使UE能够运行高计算资源需求的应用程序,同时满足严格的延迟要求。在传统的移动边缘计算场景下,为充分利用UE和基于固定基站的移动边缘计算云服务器两者的资源,大部分学者提出在通信、存储和计算等多方面资源的联合优化。然而,在具有高移动性的通信设施或者UE中,移动网络拓扑结构发生快速变化,传统优化方法很难解决多维异构的计算资源和通信资源分配问题。针对移动边缘计算场景的资源分配问题,特别是在交通领域,目前有大量学者采用集中式的基于离散动作空间的深度Q网络(Deep Q Network,DQN)进行决策控制。不同与上述研究,本文面向连续动作空间的研究。为解决场景所面临的问题,主要的研究工作如下:一、针对单无人机(Unmanned Aerial Vehicle,UAV)多用户的移动边缘计算场景中资源分配问题,提出一种联合用户调度、无人机移动性和计算卸载决策优化方案,降低了UE的处理时延。首先本文建立了网络通信和计算卸载模型,以最小化所有时隙的最大的处理时延作为优化目标。其次,考虑到计算卸载决策变量的连续性,采用一种基于连续动作空间的深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)来联合优化用户调度、无人机移动性和计算任务分配。实验结果表明,所提算法能快速收敛到最优解。同时,与DQN等基线算法相比,该算法在处理延迟方面有了显著的降低。仿真结果表明了所提算法的收敛性,以及比较了在不同神经网络的超参数条件下算法的性能表现。相较于其他算法如DQN、Actor Critic和随机算法,在不同任务大小、UE的计算能力和带宽条件下所提算法均能获得最低的任务处理总时延。二、针对车联网中快速变化的信道条件下难以使用集中式采集环境信息进行资源分配的问题,采用一种基于连续动作空间的多智能体(Multi-Agent,MA)的分布式深度强化学习算法MADDPG优化共享的频谱资源,提高了所有V2I链路的总容量和所有的V2V链路的传输速率。每辆车作为一个独立的智能体,它们与车联网环境交互获取一个相同的奖励。通过集中式训练Critic网络和分布式执行Actor网络输出的决策,多智能体之间学会了相互合作。通过实验,本文依次验证了所提算法的收敛性、鲁棒性以及各个智能体的性能表现。相对于MADQN、DDPG算法和随机算法,所提算法在V2I链路总容量和V2V链路负载传输成功概率方面具有更高的性能表现。相较于随机算法,所提算法优化的V2V链路可以通过合作更快地完成负载传输。
其他文献
光纤弯曲传感器在建筑、航空、医药、平面度监测、机械结构弯曲角度测量等多个领域都有着广泛的应用和重要意义。随着材料技术的发展,传感器在朝着精确、灵敏、智能化、网络化、低成本、易于加工的方向发展。光纤传感器由于其固有的优势受到了科研人员的广泛关注,而增敏型塑料光纤弯曲传感器有着制作简单,可判断弯曲方向,能有效增大光纤弯曲时的传输损耗灵敏度和动态测量范围,可用于分布式光纤传感等优点。随着图像处理器等高性
细粒度图像分类是计算机视觉领域中的一个重点研究方向,由于细粒度图像数据存在难以收集与标注昂贵的特性以及细粒度类别间相似度高的特点,其识别难度往往远高于通用图像数据的识别。现有的细粒度图像分类方法尽管在一定程度上缓解了类间差异小的问题,但这些方法的训练却倾向于依赖大量数据,而在样本量少的情境下无法很好地完成分类。为了解决上述问题,研究人员提出了针对细粒度图像分类场景下的小样本学习方法,这些基于小样本
随着通讯技术和传感器技术的快速发展与普及,能够融合现代通信与网络技术的智能网联汽车(CAVs)将会逐渐替代普通人工驾驶汽车(HVs)。CAVs通过车与车、车与道路设施之间信息的交互,来具备感知周围环境的能力,从而做出智能的决策,以实现安全、舒适、节能、高效的行驶要求。当前交通存在由于信息滞后导致的交通震荡问题,该现象普遍出现在道路前方路口有红绿灯的情况。且现阶段研究对于道路上CAVs和HVs大量共
移动互联网的普及伴随着大量网络安全问题的出现,许多新型的网络攻击方式层出不穷,危机事件频发。我国互联网安全态势仍然严峻。如何应对网络攻击,保障网络安全是我们亟待研究的问题之一。面对日新月异的攻击手段,传统网络流量异常检测方法已经不适用于当前的网络环境。传统网络流量异常检测方法过于依赖对特征的人工选择,缺乏自适应性,面对新类型的异常检测准确率低;在面对海量高维流量数据时,难以有效提取其中的关键特征,
多智能体系统的分布式协同控制在很多领域有着诸多应用,例如,无人飞行器的编队控制,传感器网络的协同控制等。近几年来,随着学者的深入研究,多智能体系统的控制条件也被考虑的更加复杂和全面。比如,我们在考虑系统实现控制目标的同时,也希望能够达到减少通信次数,节省能量消耗的目的。为此,有学者提出事件触发控制策略和时间触发控制(采样控制)策略。这两类控制都是在控制器中引入触发时刻,使得智能体的控制器由原先的连
云计算作为二十一世纪初期的新兴事物,目前已步入较为成熟的发展阶段,其依托于虚拟化技术,将各类资源进行有效整合和管理,向用户提供了高效的计算服务和应用软件。近年来,图像处理、地震预测、基因组测序等应用程序生成的工作流日渐复杂,使得越来越多的工作流被提交到云中处理。为了满足各类场景下不同用户的计算要求,国内外云服务提供商纷纷升级扩展云数据中心,但是目前数据中心的资源利用率较低,使得高能耗问题成为云服务
在现代化的大型制造车间中,为节省人力、提高车间生产效率,大量企业都为生产车间和立体仓库引入了AGV系统。AGV(Automated Guided Vehicle,自动导航小车)是指装备有电磁或光学等自动导引装置,能够沿导引路径行驶,具有各种移栽及安全保护功能的运输车。企业在智能物流解决方案中使用AGV,不仅是为了实现内部物流的柔性化,更重要的是借此打通生产各流程,推进生产全过程的数字化,最终实现打
稀疏线性逆问题是指在测量矩阵已知的情况下从观测样本恢复出原始的稀疏信号,在现实生活中众多学科和领域发挥着重要的作用。在通信系统中,通过利用无线信道的稀疏特性,压缩感知理论和其中的稀疏线性求逆算法实现了信令开销的降低和用户容量的扩展。近年来,基于神经网络的稀疏线性求逆算法以其优异的重建性能和快速的收敛特性被广泛地研究。然而,这些机器学习算法忽略了传统迭代算法中的一个关键特征,那就是不同稀疏度的稀疏信
语音增强的目的是通过设计一种高效的信号处理算法,去除带噪语音中的各种干扰噪声,恢复出干净的增强语音,同时要保证增强语音有较高的恢复质量和可理解度。传统的语音增强算法在使用前需要对语音和噪声信号做出严格的假设,这限制了其在一些复杂的现实场景中的应用。近年来,无需任何假设、具有强数据建模能力的神经网络得到研究人员的广泛关注,成为本领域的主流算法。本文主要针对提高卷积神经网络全局建模水平和语音增强能力展
高速飞行列车是利用低真空环境和超音速外形减小空气阻力,通过磁悬浮减小摩擦阻力,实现超音速运行的运输系统。高速飞行列车的运行速度可以达到1,000~4,000km/h,具有高效、节能和环保等优点,有望成为未来的新型交通方式,近年来逐渐成为研究热点。由于高速飞行列车速度比已有轨道交通系统列车的速度高出许多,现有轨道交通系统的运行控制系统无法完全适用于高速飞行列车。因此,有必要针对高速飞行列车的特点,对