论文部分内容阅读
好氧活性污泥处理技术在城镇生活污水处理中广为应用,但其存在占地面积大、污染物处理稳定性差和抗冲击负荷能力低等不足,制约了现有污水厂的节能减排。好氧颗粒污泥技术以其优异的沉降性能、高效稳定的污染物去除能力及较小的占地面积等为污水处理提供了新方式。但高表观气速的培养条件产生的高能耗问题,以及颗粒易受微生物内源呼吸或丝状菌扩增的破坏,导致颗粒解体、去除效果恶化的问题,制约了该技术的应用。本研究以低能耗下构建好氧颗粒污泥、提高颗粒的结构强度和运行稳定性为目的,开展以骨架强化为核心的污泥颗粒化试验研究,并从分子生物学水平探究颗粒化过程中微生物群落结构的时空演替规律,以对颗粒结构的强化机制与效能进行研究。
在低表观气速下(1.0cm/s)研究了SBR反应器中污泥好氧颗粒化及稳定运行过程。反应器经过120d的运行成功培养出好氧颗粒污泥,颗粒平均粒径为3.5mm,平均沉降速度为56m/h,丝状菌和胞外聚合物中的β-多糖是维持颗粒结构完整性的重要因素。稳定阶段的好氧颗粒污泥表现出较高的污染物去除效能,其对COD、NH4+-N、TN和TP的去除率分别为93.5%、99.1%、75.2%和98.5%。与最适表观气速条件相比,曝气强度降低60%左右。但在低表观气速下,颗粒化前期颗粒尺寸增长过快及丝状菌过量繁殖,使得颗粒结构稳定性低、频繁解体。反应器内最终呈现为颗粒与絮状污泥共存状态。
为提高颗粒的结构稳定性,分别利用碳纤维(Carbon Fiber,CF)和微海绵(Micro Sponge,MS)对颗粒的线性和空间网状骨架进行强化。二者均能有效促进颗粒污泥的成熟并提高其结构强度,颗粒沉降速度升高至71m/h和120m/h以上,分别比传统高表观气速下培养的颗粒提高1.4%和71.4%。空间网状骨架的强化效果更加显著,反应器可在60d内实现稳定运行,分别比常规颗粒化和线性骨架强化型颗粒化过程提前60d和35d,颗粒成熟时间缩短50%和36.8%。外源骨架通过替代颗粒中部分丝状菌和β-多糖骨架发挥作用。在外源骨架强化下,颗粒中蛋白质与多糖总量下降,但紧密结合型多糖含量升高38%以上,且外源骨架越密集,紧密结合型多糖含量越高,同时对颗粒自身骨架的替代程度越高。颗粒结构强度及DO渗透深度是影响颗粒内微生物群落结构的主要因素,黄杆菌属(Flavobacterium)、Candidatus_Competibacter、硝化螺菌属(Nitrospira)、假单胞菌属(Pseudomonas)、norank_p__Saccharibacteria和norank_f_Saprospiraceae等均与二者表现出较高相关性。
对骨架强化型颗粒化过程的影响因素进行分析,结果表明,外源骨架对表观气速的高效补偿可进一步将颗粒化所需表观气速降低40%。0.6cm/s的表观气速下不仅颗粒化过程更快,还促进了颗粒中反硝化聚磷菌的富集,使得系统TN去除率升高至99%。进水有机物浓度对颗粒化过程影响明显。当进水COD浓度为200mg/L时,0.8kgCOD/m3/d的低有机负荷使得微生物增殖速率和胞外聚合物分泌量不足,TN和TP去除率仅64.8%和50.9%。而当进水COD浓度为800mg/L时,反应器对TN和TP的去除率分别升高至92.6%和98.5%,但运行初期高达1.5gCOD/gSS/d的污泥负荷使得骨架内部迅速被胞外聚合物填充,直至污泥负荷降低至0.6gCOD/gSS/d以下,颗粒化过程才得以迅速完成。水力停留时间通过作用于饱食-饥饿效应而影响颗粒化过程。随着水力停留时间延长,进水有机物向胞外聚合物的转化效率提高。然而,当水力停留时间为12h时,0.8kgCOD/m3/d的低有机负荷以及周期内接近5h的饥饿期使得微生物增殖速率不足、胞外聚合物内源消耗增加,不利于颗粒的形成。
与常温下好氧颗粒污泥特性相对比,实验同时考察了低温条件下(10℃)常规好氧颗粒污泥和骨架强化型好氧颗粒污泥的形成和稳定运行,探究低温对低表观气速下颗粒化过程的影响机制。在低温条件下,常规颗粒化过程中由于丝状菌和unclassified_f_Comamonadaceae的过量繁殖而无法自主实现完全颗粒化,反应器实现稳定运行的时间为160d。低温对常规颗粒中反硝化过程抑制明显,其稳定阶段TN去除率仅60%。而在骨架强化型颗粒化过程中,反应器进入稳定状态时间缩短90d左右,其TN和TP平均去除率分别为70.5%和99.7%,系统中微生物种群丰度和多样性分别是常规系统中的1.6倍和1.1倍,unclassified_f_Comamonadaceae的相对丰度保持在5%以下,表明骨架强化型颗粒化方式对低温的适应能力和对微生物群落结构的调控能力更强,同时对氮磷等污染物具有更高的去除效能。
在低表观气速下(1.0cm/s)研究了SBR反应器中污泥好氧颗粒化及稳定运行过程。反应器经过120d的运行成功培养出好氧颗粒污泥,颗粒平均粒径为3.5mm,平均沉降速度为56m/h,丝状菌和胞外聚合物中的β-多糖是维持颗粒结构完整性的重要因素。稳定阶段的好氧颗粒污泥表现出较高的污染物去除效能,其对COD、NH4+-N、TN和TP的去除率分别为93.5%、99.1%、75.2%和98.5%。与最适表观气速条件相比,曝气强度降低60%左右。但在低表观气速下,颗粒化前期颗粒尺寸增长过快及丝状菌过量繁殖,使得颗粒结构稳定性低、频繁解体。反应器内最终呈现为颗粒与絮状污泥共存状态。
为提高颗粒的结构稳定性,分别利用碳纤维(Carbon Fiber,CF)和微海绵(Micro Sponge,MS)对颗粒的线性和空间网状骨架进行强化。二者均能有效促进颗粒污泥的成熟并提高其结构强度,颗粒沉降速度升高至71m/h和120m/h以上,分别比传统高表观气速下培养的颗粒提高1.4%和71.4%。空间网状骨架的强化效果更加显著,反应器可在60d内实现稳定运行,分别比常规颗粒化和线性骨架强化型颗粒化过程提前60d和35d,颗粒成熟时间缩短50%和36.8%。外源骨架通过替代颗粒中部分丝状菌和β-多糖骨架发挥作用。在外源骨架强化下,颗粒中蛋白质与多糖总量下降,但紧密结合型多糖含量升高38%以上,且外源骨架越密集,紧密结合型多糖含量越高,同时对颗粒自身骨架的替代程度越高。颗粒结构强度及DO渗透深度是影响颗粒内微生物群落结构的主要因素,黄杆菌属(Flavobacterium)、Candidatus_Competibacter、硝化螺菌属(Nitrospira)、假单胞菌属(Pseudomonas)、norank_p__Saccharibacteria和norank_f_Saprospiraceae等均与二者表现出较高相关性。
对骨架强化型颗粒化过程的影响因素进行分析,结果表明,外源骨架对表观气速的高效补偿可进一步将颗粒化所需表观气速降低40%。0.6cm/s的表观气速下不仅颗粒化过程更快,还促进了颗粒中反硝化聚磷菌的富集,使得系统TN去除率升高至99%。进水有机物浓度对颗粒化过程影响明显。当进水COD浓度为200mg/L时,0.8kgCOD/m3/d的低有机负荷使得微生物增殖速率和胞外聚合物分泌量不足,TN和TP去除率仅64.8%和50.9%。而当进水COD浓度为800mg/L时,反应器对TN和TP的去除率分别升高至92.6%和98.5%,但运行初期高达1.5gCOD/gSS/d的污泥负荷使得骨架内部迅速被胞外聚合物填充,直至污泥负荷降低至0.6gCOD/gSS/d以下,颗粒化过程才得以迅速完成。水力停留时间通过作用于饱食-饥饿效应而影响颗粒化过程。随着水力停留时间延长,进水有机物向胞外聚合物的转化效率提高。然而,当水力停留时间为12h时,0.8kgCOD/m3/d的低有机负荷以及周期内接近5h的饥饿期使得微生物增殖速率不足、胞外聚合物内源消耗增加,不利于颗粒的形成。
与常温下好氧颗粒污泥特性相对比,实验同时考察了低温条件下(10℃)常规好氧颗粒污泥和骨架强化型好氧颗粒污泥的形成和稳定运行,探究低温对低表观气速下颗粒化过程的影响机制。在低温条件下,常规颗粒化过程中由于丝状菌和unclassified_f_Comamonadaceae的过量繁殖而无法自主实现完全颗粒化,反应器实现稳定运行的时间为160d。低温对常规颗粒中反硝化过程抑制明显,其稳定阶段TN去除率仅60%。而在骨架强化型颗粒化过程中,反应器进入稳定状态时间缩短90d左右,其TN和TP平均去除率分别为70.5%和99.7%,系统中微生物种群丰度和多样性分别是常规系统中的1.6倍和1.1倍,unclassified_f_Comamonadaceae的相对丰度保持在5%以下,表明骨架强化型颗粒化方式对低温的适应能力和对微生物群落结构的调控能力更强,同时对氮磷等污染物具有更高的去除效能。