论文部分内容阅读
目标从毫米波雷达进入近地面光学系统探测范围时,目标2D图像信息成为战场情报的关键。然而,大气中的湍流、分子和气溶胶等光传输介质使得近地面远距离成像系统获取的目标图像发生模糊、几何畸变、纹理缺失等退化降质。为提高该类近地面远距离成像场景下的扩展目标检测与识别能力,本文围绕扩展目标识别的关键技术展开研究。首先,采用预处理手段增强目标图像和去除湍流几何畸变。接着,针对运动的暗弱扩展目标提出了有效的检测算法。在以上预处理和检测算法获取较为完备的动静态轮廓形状目标基础上,改进了方向形状上下文匹配算法以提高远距离湍流杂波场景下的点集形状扩展目标匹配识别精度,同时还针对湍流形变轮廓扩展目标提出了融合轮廓形状关键点结构和热核特征的分类识别算法。具体研究工作可分为以下五个方面:(1)提出了一种无需任何先验信息的自适应全尺度Retinex(AFSR)目标图像增强算法。与传统复原方法需依靠自然成像场景中的海量数据和先验知识来构建数学模型或者深度网络模型不同,所提方法无需先验信息便可利用图像光传输透射率自适应地引导构建全尺度环绕函数,改进了传统Retinex方法不能表征深度光照信息以及手调尺度参数的缺点。同时,采用简单的线性逼近策略代替对数函数运算进行反射分量解算,降低了算法的计算复杂度,能够在997×658×3大小的视频图像序列中达到0.055s/帧的准实时处理。大量实验表明:所提算法能够有效地提高外场近地面薄膜衍射成像系统获取的目标图像能量,提高扩展目标的鉴别力。(2)提出了一种基于自适应混合高斯子空间分解(AMoGSF)的扩展目标图像去几何畸变算法。为克服自适应光学系统在近地面非等晕成像中的局限,以及传统的(半)盲复原算法难以获得准确先验知识和无法处理时空变化畸变的问题,提出了一种在线式的去几何畸变算法。所提方法利用混合高斯分布模型对湍流前景中的目标、噪声和湍流分量建模,同时利用多帧低秩结构进行在线子空间分解以实现包含运动目标的几何畸变矫正。在合成的湍流退化图像序列、薄膜衍射成像实验系统和外场远距离光学成像系统等三类图像数据上实验,结果表明:所提的AMoGSF算法能够平均提高湍流畸变图像的峰值信噪比(PSNR)约30dB,降低归一化均方误差(NMSE)约4.5%。与此同时,所提方法提高了目标鉴别力,获得了较为完备的轮廓形状扩展目标,也为后续自动目标识别奠定了基础。(3)提出了一种由粗到精的暗弱运动扩展目标检测算法。针对机载、车载等近地面远距成像场景中出现相机抖动或平台旋转导致视频序列背景低秩假设受到破坏,以及湍流分量与真实运动物体咬合交织导致目标检测识别准确率降低等问题,提出了转移操作算子的T-AMoGSF模型以保证相机抖动或平台移动下的背景低秩特性,改进了算法在动态背景下提取‘粗’运动目标的鲁棒性。同时,改进的可变加权管道滤波(VWPF)方法能充分利用多帧序列的时空结构特性以有效地对暗弱刚体或非刚体目标进行‘细’识别。对比了7种方法在5种不同湍流场景中的实验结果,验证了所提方法在近地面可见光和红外成像数据集上获得最好的检测精度,最小的漏检率和虚警率。该方法实现了远距离成像探测系统中感兴趣区域(ROI)的运动暗弱扩展目标直接检测识别。(4)针对近地面湍流杂波场景中形状点集扩展目标匹配误差较大的问题,提出了一种形状边连续性约束下的方向形状上下文(OSC)能量代价函数模型。所提方法首先构造了一个具有旋转和尺度不变特征的OSC描述算子,然后在形状边连续性先验约束条件下构建了匹配能量代价函数模型,最后利用有序的动态匹配算法实现目标代价函数优化,算法的时间复杂度也由传统的O(n~4)下降到O(nm~2),其中(n>m)。在仿真的湍流杂波点集形状和实际的近地面形状目标场景中实验,结果表明:所提方法较其他2种典型的方法更具鲁棒性,匹配精度平均提高约7%。(5)针对发生形变的轮廓形状扩展目标导致识别精度下降问题,提出了一种改进形状上下文和几何等距不变特征的融合描述算子。所提方法首先理论推导出广义的形状特征融合模型和贝叶斯分类器模型,然后利用改进的加权离散轮廓演化算法(WDCE)有效地获取湍流杂波场景中目标轮廓形状的稀疏关键点。在此基础上,构建了基于关键点形状结构(CP-IDSC)和局部等距不变热核(SI-HKS)的融合特征算子进行分类和匹配识别。在仿真和实际的湍流形变数据集上实验表明:所提出的融合特征描述子对轮廓形变、旋转和尺度变化具有不变性,并可有效地用于湍流退化杂波场景下的远距离(红外或可见光成像)形变扩展目标识别。与其他4种典型的方法相比,所提方法获得最高为92.8%的识别精度。总之,本文以问题为导向,以算法模型为核心,以实验为落脚点,围绕近地面远距离探测成像场景下智能扩展目标识别中的关键技术展开研究,取得了一些理论和工程应用方面的成果。