论文部分内容阅读
股票市场的价格波动问题是当前金融研究中的一项基本且重要的课题,能否对股票市场的演化规律和股票价格的运行机理进行较为准确的刻画直接关系到资产定价、风险控制、市场监管和价格预测等一系列金融市场的重大问题。在对多重分形理论进行系统分析及对多重分形方法进行改进和完善的基础上,对中国沪深股票市场进行了实证研究,其主要内容如下:1.中国股票市场的异象性特征研究对中国股市收益率的基本统计量、长记忆性、聚类特征、多标度特征及股票价格的可预测性等异象性特征进行分析研究,结果发现:(1)中国股票市场的收益率序列不服从正态分布且具有明显的尖峰厚尾现象,并且与深成指数收益序列相比,上证指数收益序列具有更尖的峰和更厚的尾。(2)中国股票市场是一个非有效的市场,其收益率序列具有较为明显的“长记忆”效应,它们遵循有偏的随机游走,市场未达到弱式有效。(3)中国股票市场的股票价格具有聚类特征和多标度特性,用单一的标度指数不能对其进行全面细致的刻画,因此应该选择多标度分析模型对其进行描述。(4)中国股票市场股价的涨落不是完全随机的,有一定的规律可循,股票价格是可以预测的,至少是短期可以预测的。2.中国股票市场的多重分形特性研究运用MF-DFA方法、多仿射方法及q阶矩结构分割函数等方法,并在此基础上用二次函数拟合多重分形谱来对中国股票市场股指收益序列及股指序列进行了多重分形分析,发现了中国股票市场的多重分形特性及规律。(1)运用MF-DFA方法,对中国沪深两市股市收益序列的研究发现,股票市场存在明显的多重分形特征。进一步地,发现股票市场的多重分形特征是由两个因素共同作用的,其中收益序列的波动相关性起主导作用,是形成多重分形特征的主要原因,收益序列的胖尾概率分布对多重分形特征的形成也起到了一定的作用;而多重分形过程的本质原因是股票市场信息倍增级联过程的结果。(2)沪深股市收益序列存在较为明显的标度突变点s*,该突变点将整个时间标度分为两个部分,每个部分具有不同的多重分形特征及标度指数。在s<s*的情况下,股指收益序列的多重分形强度较强,多重分形特征较明显;s>s*的情况下股指收益序列的多重分形强度较弱,多重分形特征不明显。(3)运用多仿射方法对沪深两市收益序列的研究发现,股票市场存在多仿射现象;另外,研究结果发现广义Hurst指数H(1)与H(2)的值与市场的发展状态之间具有一定的敏感性,发达国家股票市场的H(1)值均较小,而且H(1)及H(2)值均小于0.5,而新兴股票市场的H(1)值均较大,而且H(1)及H(2)值均大于0.5。上海股票市场及深圳股票市场均属于新兴金融市场一类。(4)运用q阶矩结构分割函数法对股价波动的多重分形特性进行实证研究,结果发现多重分形谱参数与指数的变化趋势及对数收益率具有明显的关联性,并且在股价发生大幅波动的情况下,多重分形谱参数α0,αmax,αmin,W和C均具有较明显的变化特征,这为研究股票市场的运行规律提供了有力的依据。3.中国股票市场的价格预测研究基于多重分形理论,对上证指数股指价格进行方向预测及非线性预测,得到了较好的预测效果:(1)基于日收盘指数价差(ΔI)的符号序列方法与基于日多重分形谱参数(Δf)的符号序列方法都能以一定的概率预测指数的涨落,而且将两种符号序列方法结合可以更好地预测指数的大涨落;在引入股价指数大涨落的阈值和条件平均增益后,发现大幅涨落时,条件与指数变化的关联性比小的涨落要强得多。(2)提出基于多重分形谱的神经网络模型,并将其应用于股票价格的短期预测,发现该模型对于模拟股市的短期走势具有较好的预测效果,对防范和控制风险具有现实意义。