大位移摩擦摆隔震结构及其抗极罕遇地震性能

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:lai34965
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
隔震技术是结构抗震领域近半个世纪以来突出的研究成果之一,已得到广泛的应用。目前已建成的隔震建筑大多集中在潜在地震发生区域,由于地震发生、强度和特性的不确定性,在设计基准期内隔震建筑仍可能遭受极罕遇地震的作用。隔震建筑等重要建筑为了避免结构破坏以及建筑功能丧失,其抗震需求明显高于普通建筑,增加抗极罕遇地震能力不仅能够实现日益增长的抗震需求也能够提高结构的安全储备。研究探索新的隔震方式和设计方法,既付出不大的代价、又经济有效地实现隔震结构抗极罕遇地震的性能目标是本文研究的方向和主要内容。隔震措施可以使上部结构在罕遇地震下处于弹性或轻微弹塑性状态,从而有效保护设防烈度下结构构件及非结构构件的安全,实现结构预期的抗震性能。目前对隔震结构抗震性能的现有研究主要集中在设防地震及罕遇地震方面,对极罕遇地震下隔震结构的抗震性能的研究不足。研究表明,传统隔震结构在极罕遇地震作用下的破坏主要是由于隔震支座变形过大引起,增加隔震支座的变形能力能够直接、有效地实现隔震结构整体的抗震性能的提高。传统橡胶支座由于水平变形能力与支座刚度呈正相关,提高橡胶支座的变形能力与提高隔震效果之间存在矛盾。传统摩擦摆支座水平隔震能力能够避开竖向承载力、支座尺寸的限制,可以实现更柔的隔震层,进一步研究开发,可望实现更大水平位移的隔震层,从而能够有效地实现抗极罕遇地震的性能目标。这也是本文研究主要的切入点和相关内容。本文从大幅提高隔震层水平位移能力和隔震结构最主要失效模式“隔震层破坏”安全储备的基本目标出发,分别提出了以隔震层整层作为滑动面、整体或分块组合体作为滑块的整体式大位移摩擦摆隔震结构体系和组合式大位移摩擦摆隔震结构体系,采用理论分析、数值模拟与试验验证相结合的方式,开展大位移摩擦摆隔震建筑结构体系抗极罕遇地震性能研究,主要内容如下:1、提出了将主体结构整体安置于一个超大半径滑动球面的整体式大位移摩擦摆隔震结构体系,实现了超长隔震周期和超大隔震层滑动位移;通过设计合理的摩擦系数控制隔震层的起滑和耗能,使得隔震结构具备抗远超设防烈度的极罕遇地震能力。通过上部结构在隔震层滑动面上的整体转动以及滑动面各接触位置支反力方向的不同,推导建立了整体式大位移摩擦摆隔震结构体系的运动方程,分析得到了整体式大位移摩擦摆隔震结构具有不同于传统摩擦摆隔震结构的一些力学性能:隔震结构具有刚度恒定、周期不变的特点,但是,结构隔震周期和摩擦力作用并非直接对应滑动面半径及滑动面摩擦系数;通过定义整体式大位移摩擦摆隔震结构等效半径和等效摩擦系数,实现了隔震结构自振周期和摩擦力作用的准确表征和计算。通过整体式大位移摩擦摆隔震结构的抗震性能分析,结果表明:合理设计的隔震上部结构在极罕遇地震下仍能保持弹性;隔震层最大位移远超传统摩擦摆支座极限位移,极罕遇地震摩擦摆实际滑动位移远未达到整体式大位移摩擦摆支座极限位移,且隔震层的残余位移不影响正常使用,整体式大位移摩擦摆隔震结构具备抗极罕遇地震的能力。2、提出通过多组上下滑动面及内部分块组合体滑块形成隔震层的组合式大位移摩擦摆隔震结构体系,该隔震体系使上部结构保持平动、同时隔震层具备大变形能力,可满足特殊隔震建筑对平动功能性和抗超罕遇地震安全性的需求。建立了组合式大位移摩擦摆隔震层的运动方程,推导得出了与隔震结构动力特性对应的等效质量、等效摩擦系数、等效地震作用等重要参数。通过数值模拟,验证了组合式大位移摩擦摆隔震结构具备抗极罕遇地震能力。极罕遇地震下组合式大位移摩擦摆隔震上部结构能够保持弹性,楼面加速度不超过加速度敏感型构件的要求;隔震层实际地震位移远未超过组合式大位移摩擦摆支座极限位移,震后留有残余位移的隔震层隔震能力不变。对比了整体式和组合式大位移摩擦摆支座的适用条件,其中整体式大位移摩擦摆支座适合对安全性需求高、允许结构出现小幅度摇摆、隔震层水平向预留足够大滑移空间的隔震建筑;组合式大位移摩擦摆支座适合不允许出现小幅度摇摆、隔震层竖向预留足够大滑移空间的隔震建筑。3、为开展整体式和组合式大位移摩擦摆隔震支座底层隔震结构振动台试验研究,设计了一座15层的大位移摩擦摆框架隔震结构,考虑隔震结构在地震作用下变形以第一振型为主,提出了采用刚体框架与橡胶支座结合模拟隔震层上部结构主振型响应的等效单自由度隔震结构体系试验模型;设计并委托加工制造了整体式和组合式大位移摩擦摆支座,实现了隔震层的缩尺模拟。通过白噪声加载工况试验,验证了试验中对主体结构动力特性缩尺的准确性;通过有无初位移的罕遇、极罕遇地震工况试验,准确模拟了隔震层响应,验证了隔震层在极罕遇地震下具备足够的位移能力、上部结构能够保持弹性;对比有无支座初始位移的加载工况,上部结构隔震效果和在隔震层上的滑动趋势基本不变,表明震后支座残余位移对之后地震的抗震性能影响很小。通过实验精细标定了摩擦摆支座摩擦系数和隔震结构周期。隔震层响应和上部结构隔震效果与数值模拟结果基本吻合。4、对于高层隔震建筑,提出了每隔若干层布置一个隔震层的多层隔震结构体系,结构前几阶隔震周期均可远超地震卓越周期,大幅降低隔震结构前几阶振型的地震效应,从而大幅减小分块隔离的主体结构和整体结构的地震作用。在整体式大位移摩擦摆多层隔震结构体系中,地震作用产生的倾覆弯矩与上部结构整体倾斜产生的弯矩方向相反,结构更不易发生倾覆。以20层的双层隔震结构为例,分析了极罕遇地震下双层隔震体系的抗震性能,得到了比底层隔震结构体系更好的隔震效果,整体抗倾覆能力提高了二倍。成功设计和完成了整体式和组合式大位移摩擦摆双层隔震结构体系振动台试验,验证了双层隔震结构在极罕遇地震下不会出现破坏,主体结构的隔震效果很好、并且没有倾覆风险。
其他文献
能源危机和环境污染的日益加重迫使人们越来越关注清洁能源和高效储能设备的开发。在众多储能设备中,钠离子电池凭借资源丰富、价格低廉、分布广泛等优点独具优势。而开发具有高比容量、循环性能和倍率性能的负极材料对推动钠离子电池实际应用具有重要意义。碳材料因其价格低廉、热稳定性好、反应电压平台低等优势被认为是最有应用潜力的钠离子电池负极材料。为了降低原料成本并达到绿色环保的目的,本文选用价格低廉的生物质葱皮作
在“嫦娥四号”工程中继星“鹊桥”发射任务中,长征四号丙火箭尚有100kg左右的剩余运载能力。为充分利用该剩余运载能力,哈尔滨工业大学联合中国科学院空间中心提出了月球轨道超长波天文观测微卫星方案,开展对宇宙黑暗时代的观测和探索。该项目得到了国防科工局的批准与黑龙江省的重点支持,是基于微卫星开展低成本深空探测的有益探索。任务过程中,“龙江二号”需要在燃料受限、测控资源保障不足及星上计算资源有限的情况下
天然气地下储气库是满足天然气市场调峰需求,保证城镇连续供气的最佳途径。改建为地下储气库最理想的气藏条件是单一砂岩孔隙结构的枯竭气藏。但我国现有的枯竭油气藏多分布在西北部等偏远地区,在亟需用气量的中东部地区鲜有适合建设地下储气库的地质条件,多为渗透率较低的非常规储层。迄今为止在世界范围内还没有低渗透气藏改建为地下储气库的研究工作。为了满足我国中东部地区城市调峰需求,需对低渗透气藏改建为地下储气库的可
为解决我国大气污染严重问题,国家对燃煤电厂烟气排放要求日益严格,NOX逐步实施超低排放标准(50 mg/m3),但是目前脱硝技术支撑不足。微藻脱硝技术是一种新兴的烟气脱硝技术,具备反应条件温和、资源化潜力大、深度处理效能高的特点,适合用于中低浓度NOx的深度处理,有助于促进电力行业可持续发展,可以作为烟气深度脱硝的技术储备,但是其存在基础理论研究不深入、作用机制不清晰、工艺设计不完善等问题。为开发
难降解工业废水处理需求日益加剧,传统处理方法难以满足提标减排的新要求。电化学氧化法以“清洁”电子驱动有机污染物降解,具有高效、环境友好、易于自动化等优势,在分散式水处理领域备受关注。然而,受限于电生·OH极强的反应活性和极短的半衰期,使其仅附存于阳极附近亚微米级的反应薄层内。因此,在阳极界面微物理场作用下,边界层内电生·OH产量、反应活性以及与污染物的传质-氧化反应尤为错综复杂。为此,以强化·OH
纺织印染工业在我国经济中占据重要的位置,每年排放的大量含盐染料废水对环境造成了巨大的压力,对清洁用水造成巨大危害。基于可持续发展的理念,开发零排放的资源回收处理技术已成为一种发展趋势。其中纳滤技术以高效的选择性分离污染物的优点成为纺织废水中最有潜力的回收处理技术之一。如果将染料和盐类进行分离回收,把污水转变为资源的来源,可以提高企业水资源的内部循环,推动污水绿色处理的可持续发展。但传统纳滤膜具备高
在气动热环境中,当带有红外制导装置的飞行器高速飞行时,其前方的光学头罩温度迅速提升。由于受热不均匀,光学头罩的温度和折射率为非均匀分布。当一束平行光束通过折射率呈非均匀分布的流场和光学头罩时,其传播方向发生改变,增加了附加的相位。被探测器接收到的目标图像出现模糊、抖动、和像偏移。这种现象被称为气动光传输效应。同时气动加热的光学头罩发出强烈的红外辐射光束。红外辐射光束通过红外导引头后方的光学系统被探
氢能由于热值高、来源广和产物无污染等优点在众多新型能源中脱颖而出,但传统的氢能的制备方法存在能耗高、初期投资成本高及污染环境等问题已不能满足目前对氢能的需求。电解水制氢是一种绿色无污染、操作简单的方法,但转换效率低制约了该技术在工业中大范围应用,目前亟需开发高活性材料来降低电解水的能耗并提高能源转化效率。本文以硒化钴为基体材料,采用掺杂和复合共用的方法对其进行改性研究,开发复合材料的形貌和结构调节
TiAl合金由于具有较低的相对密度,较高的比模量和比强度以及优秀的高温抗蠕变和抗氧化能力,被认为是在航空航天和汽车工业领域具有巨大应用潜力的理想高温结构材料,但是TiAl合金室温塑性及高温热加工性能较差的特点严重限制了其实际应用。而相比传统成分的TiAl合金,通过体心立方β相区凝固形成的β凝固TiAl合金可以获得晶粒细小的组织结构并具有平衡的机械性能及优良的热加工性能。此外,在TiAl合金中添加适
金属锑(Sb)具有低成本、储量丰富且理论比容量高的优势,是当前最具开发价值的钠离子电池(SIB)负极材料之一。然而,商业Sb粉在电化学循环过程中会因发生较大的体积膨胀而发生粉化,造成严重的容量衰减,同时,Sb作为SIB合金型负极材料还存在倍率性能较差的问题。对此,本文设计并制备了一种纳米多孔结构Sb基SIB负极材料,借助孔径跨尺度的分级多孔结构优势,有效提高了电极材料的倍率性能,利用电化学非活性组