论文部分内容阅读
畜禽养殖污染是我国主要的农业面源污染之一,也是国家“十三五”水污染防治行动计划重点解决的问题之一。畜禽养殖废水中COD、NH4+-N和SS等污染物浓度很高,排入受纳水体将对生态环境和人类健康带来潜在危害。现有处理工艺主要以用厌氧-好氧或厌氧-自然组合工艺为主,对常规的有机物有较好的去除,但对高浓度氨氮的去除尚存较大难度。针对该类废水中高浓度氨氮去除难的问题,开发高效、经济的水处理技术势在必行。本研究以养猪场固液分离后原液和厌氧发酵后沼液作为研究对象。针对原液高有机物、高氨氮特性,基于部分异养硝化-好氧反硝化(Heterotrophic nitrification-aerobic denitrification,简称HN-AD)复合菌具有耐高氨氮、高有机物和高效脱氮的特性,借助菌剂挂膜技术,构建了三维结构生物转盘+生物接触氧化(3D-RBC+BCO)组合工艺。采用好氧3D-RBC预处理替代厌氧发酵,充分利用原液中的碳源进行脱氮,源头大幅削减污染物浓度;借助BCO单元深度处理3D-RBC出水,达到排放要求。研究了3D-RBC和BCO单元菌剂挂膜启动过程、参数优化阶段污染物的去除效果以及微生物群落结构的变化规律,考察了组合工艺对原液处理后的达标情况。针对沼液寡营养、高氨氮的水质特征,采用耐高氨氮、适应贫营养生长的HN-AD复合菌挂膜启动3D-RBC+BCO组合工艺。研究了寡营养条件下菌剂挂膜启动情况,考察了溶解氧(DO)浓度和C/N对污染物去除效果的影响。同时,借助高通量测序技术揭示了组合工艺寡营养条件下仍可以高效脱氮的微观机理。主要结论如下:1、采用HN-AD复合菌挂膜启动3D-RBC预处理原液,仅需15d就完成了3D-RBC的快速挂膜。采用调节盘片线速度和C/N的方式,仅65d实现了HN-AD菌在反应器中的富集及工艺的启动。采用该工艺对原液进行处理,COD、NH4+-N、TN的去除率高达69.8%、87.9%和79.5%,污染物削减效果明显优于传统工艺。高通量测序结果表明,生物膜内具有HN-AD功能的优势菌由盐单胞菌属(Halomonas)、不动杆菌属(Acinetobacter)逐渐变为丛毛单胞菌属(Comamonas)、嗜氢菌属(Hydrogenophaga)等,且后者的相对丰度逐渐上升。扫描电子显微镜结果也与生物多样性分析结论一致,证实丛毛单胞菌属(Comamonas)、嗜氢菌属(Hydrogenophaga)在氨氮源头削减中发挥主要作用。2、以HN-AD菌生物强化BCO工艺处理3D-RBC出水。前期污泥驯化阶段发现,NH4+-N浓度高于500 mg/L时,污染物去除率明显降低,经HN-AD菌剂生物强化后,耐受NH4+-N浓度可高于600 mg/L且能保持污染物的高效去除。采用HN-AD生物强化的BCO处理3D-RBC出水,对NH4+-N、TN和COD的平均去除率分别为86.9%、70.5%和74.4%,出水浓度远低于《畜禽养殖业污染物排放标准(GB18596-2001)》限值。高通量测序结果表明,生物膜内属于HN-AD菌的优势菌由Alcaligenes这一种菌属增加为生物强化后的Diaphorobacter、Acinetobacter和Thauera等多种菌属,且Acinetobacter菌属的相对丰度明显高于接种菌剂。证实Acinetobacter等HN-AD菌在3D-RBC的深度脱氮中发挥关键作用。3、在真实沼液条件下,采用HN-AD复合菌作为接种菌剂,仅用12d和18d就分别完成3D-RBC和BCO反应器的挂膜启动,同时组合工艺对COD、NH4+-N和TN的去除率分别稳定在94.8%、95.7%和80.1%,出水优于城镇污水厂排放一级B标准。在对3D-RBC反应器DO和C/N的优化过程中,增设底曝后COD、NH4+-N和TN等指标的去除率分别降低了25.4%、15.4%和15.5%。高通量测序结果显示,增加底曝后3D-RBC盘片生物膜中生物多样性明显增加,但HN-AD优势菌属丰度显著降低,导致脱氮效率下降;贫营养型Acinetobacter、Pseudomonas菌属是3D-RBC可以对真实沼液高效脱氮的关键,提高C/N会显著降低其丰度,进而影响脱氮效果。