Sine-Gordon方程的变分离散方法及其实现

来源 :南京师范大学 | 被引量 : 0次 | 上传用户:efan913
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Hamilton系统的辛几何算法具有稳定性好、长时间计算精确等优点,因此被应用于大规模科学计算的众多领域.近年来,辛几何算法被推广成偏微分方程的多辛算法.如何系统地构造多辛算法和把多辛算法的理论应用于具体的微分方程成为科学计算的一个热点.  在这篇论文里,我们从Lagrange力学出发,基于离散的变分原理,通过离散相应的偏微分方程的Lagrange泛函得到的多辛算法.这些算法都能保持离散的多辛形式.我们采用多种离散方式离散sine-Gordon方程的Lagrange泛函,得到一系列的多辛算法和相应的多辛守恒律.  最后我们给出了多个数值试验结果,说明新构造算法的有效性以及它们在控制数值解全局误差和能量误差上的优越性.
其他文献
本文在变分法的范畴下研究了问题(ρ)解的存在性(公式略)。我们一般把形式上类似于(ρ)的偏微分方程称为p(x)-Laplacian Dirichlet问题。该问题自提出以来一直是偏微分方程研究
本文主要研究了伽罗瓦群为四元数群Q8及Z/2Z×Z/2Z×Z/2Z的伽罗瓦扩域E/Q与其子域的Tame核之间的关系.  第一章主要介绍了本文需要用到的基础知识及其背景,以及Tame核的研究
在实际应用中,GMRES(m)方法是一种常用的求解非对称线性系统方法.许多学者对GMRES(m)方法的计算量和收敛性做了大量的工作。重启的Simpler GMRES(SGMRES(m))算法作为一种改进
非线性偏微分方程是现代数学不可或缺的分支,是数学理论与实际应用之间的一座重要的桥梁。到目前为止,仍有大量的非线性偏微分方程需要我们对其进行详细的研究探讨。但是,目
分数阶微积分是研究任意阶导数和积分的理论,它是整数阶微积分的推广.整数阶微积分是描述经典物理和相关学科理论的重要解析数学工具,很多问题的数学模型都可以利用整数阶微
文章认为,高等学校有着比较完备的党建和思想政治工作体系,党组织比较健全,活动 开展比较正常,有比较得力的教育引导和关心培养措施,这是高校在大学生中发展党员工作得天 独
豆科作物因其丰富的蛋白质含量而成为人类食品和动物饲料的重要原料。豆科作物具有与根瘤菌形成根瘤固定空气中氮素的能力,这不仅减少了化学肥料的使用,同时还起到培肥地力、
本文主要在一致Gateaux可微范数的实Banach空间中,研究了三重复合修正的迭代序列强收敛性,无限簇渐近非扩张映象不动点的黏性逼近法及无限簇变分不等式关于逆强增生映像的迭代
摘 要:本文对当前国有企业加强党的纪律建设面临的新情况进行分析,结合推进国有企业改革的实际情况,对加强党的纪律建设、增强组织纪律性提出了对策建议。  关键词:纪律建设;对策;建议  一、党的纪律建设的重要作用及面临的新情况  党的纪律建设是党的组织建设的重要组成部分。党的建设发展历程表明,党的纪律是党建设发展的关键要素,是党生死存亡的根本问题。随着我国改革开放和经济建设取得巨大成就,社会经济发生了