论文部分内容阅读
森林是陆地生态系统的主体。森林生态系统碳收支受气候变化及自然干扰的强烈影响。气候变化不仅通过温度和降水等气候要素的变化直接影响森林生长,还将通过改变自然干扰发生面积与强度间接改变森林生态系统碳收支。目前对气候变化及自然干扰如何影响区域尺度森林生态系统碳储量及碳收支,以及是否会改变森林碳源/汇状态、气候变化和自然干扰的叠加作用将加剧还是减缓森林生态系统碳收支损失尚不明确。本研究以三峡库区乔木林生态系统为研究对象,以1973—2018年实测气象数据、2006—2050年区域气候模式(RegCM 4.0)数据、2009年森林资源规划设计调查数据和1998—2018年自然干扰(火灾及病虫害)年度统计资料为主要数据源。在假设未来三峡库区各种森林类型面积不变、不考虑土地利用变化、森林自然更新和人为经营的前提下,本文研究了如下内容:(1)使用Mann-Kendall趋势及突变点检验分析了三峡库区近46年来气候变化特征并据此校正了未来区域气候模式,设置了3种未来气候情景;(2)应用逐步回归拟合出气候要素与自然干扰发生面积之间的线性关系,预测未来各类干扰发生面积;(3)将生态过程模型(3-PG)与林业碳收支模型(CBM-CFS3)耦合评估了2009—2050年不同气候—干扰情景下三峡库区森林生态系统碳储量及碳收支时空动态;(4)对比不同情景结果估算了气候变化对森林蓄积量的影响、气候变化和自然干扰(火灾及病虫害)分别对森林生态系统碳储量及生产力的影响,进一步评估了气候变化与自然干扰叠加作用对森林碳收支的影响,旨在识别未来三峡库区森林生态系统碳源/汇转变风险、揭示森林对气候变化及自然干扰作用的响应规律、寻求适应及减缓气候变化措施、为维持区域生态安全及社会可持续发展提供科学依据。1973—2018年三峡库区年最高温、年平均温、年最低温和年降水量分别为22.1℃、17.7℃和14.7℃和1120.8 mm。将该历史时段气候要素平均状态设置为基线气候情景(BS),将校正后的区域气候模式结果作为未来气候变化情景(RCP4.5和RCP8.5)。2009—2050年三峡库区气候变化情景(RCP4.5和RCP8.5)较基线气候情景(BS)年平均温升高0.7—0.8℃,年降水量增多1.3—24.6 mm,与全国气候变化趋势相吻合。2009—2050年三峡库区森林蓄积量及生态系统碳储量表现为先迅速增长后平稳增加趋势,净初级生产力(Net primary production,NPP)、净生态系统生产力(Net ecosystem production,NEP)和净生态群系生产力(Net biome production,NBP)呈现逐渐减小趋势。NBP在无自然干扰情景下与NEP相等。模拟期间基线气候—无干扰情景下森林蓄积量、生态系统碳储量、NPP、NEP和NBP平均值分别为3.18×108 m3(或124.30 m3·hm-2)、286.22 Tg C(或111.81 Mg C·hm-2)、7.30 Tg C·a-1(或2.85 Mg C·hm-2·a-1)、2.13 Tg C·a-1(或0.83 Mg C·hm-2·a-1)和2.13 Tg C·a-1(或0.83 Mg C·hm-2·a-1)。与该结果相比,模拟期间气候变化将使三峡库区森林蓄积量、生态系统碳储量、NPP、NEP和NBP的平均值分别增长4.29%—4.80%、2.49%—2.77%、3.42%—3.82%、6.87%—7.67%和6.87%—7.67%。三峡库区森林自然干扰包括火灾和病虫害,并以病虫害为主导干扰类型。2009—2050基线气候—干扰情景中年均自然干扰发生面积为1.22×105 hm2,相当于该区森林总面积的4.76%。与基线气候—无干扰情景对应结果相比,自然干扰将使三峡库区森林生态系统碳储量、NPP、NEP、NBP平均值分别降低6.47%、13.00%、38.47%和39.87%,其中病虫害、火灾造成的生态系统生产力损失分别占总损失量的99.39%—99.59%和0.41%—0.61%。未来气候变化将加剧自然干扰的发生,使其累积发生面积增加7.78%—14.44%;造成森林生态系统碳储量、NPP、NEP和NBP年均损失分别增加0.71%—1.07%、1.10%—1.67%、3.02%—4.68%和3.12%—4.98%。三峡库区森林生态系统碳储量、生产力的高值区集中分布于海拔较高的东部、北部边缘及中南部,呈现“东高西低,北高南低”的分布格局。高值区森林类型以落叶阔叶林及常绿阔叶林为主。在8种森林类型中气候变化对常绿阔叶林生长的促进作用最强,使其单位面积NEP增长14.88%—16.04%。在假设现有森林面积不变的前提下,自然干扰在模拟后期导致三峡库区中西部大部分区县的森林生态系统转变碳源。气候变化将进一步加剧自然干扰造成的中西部区域的森林生态系统碳损失;而海拔较高的库区东北侧及中南边缘森林受自然干扰影响较小,在自然干扰影响下表现为碳汇,对未来气候变化具有良好的适应性。研究表明,将3-PG与CBM-CFS3相结合的方法既利用了3-PG模型可模拟气候变化对林分生长的影响的优势,又利用了CBM-CFS3模型能够全面评估自然干扰对森林生态系统碳收支影响的优点,基于森林资源调查数据较准确地估算出气候变化及自然干扰对三峡库区森林生态系统碳储量及碳收支动态的影响,模拟效果理想,适用于区域尺度长时间序列的森林碳收支动态评估及自然驱动因子影响量化。未来研究区所呈现的持续升温、降水量或略有增加的气候变化趋势将提高该区森林蓄积量和生态系统碳储量。无干扰情况下三峡库区森林生态系统表现为碳汇,气候变化将增强其固碳能力。而以病虫害为主导干扰类型的自然干扰会降低森林生态系统碳储量及生产力。在假设森林类型面积不变、不考虑土地利用变化和森林自然更新的前提下,模拟后期自然干扰将使三峡库区中西部区域的森林生态系统转变碳源。自然干扰引起的森林生态系统碳储量及碳收支损失高于气候变化对森林生长的促进作用。未来气候变化将加剧自然干扰造成的森林生态系统碳损失。未来应加强对三峡库区森林生态系统的林地管理及病虫害防治,通过森林抚育及造林调整该区林龄结构,在适地适树的基础上着重选择常绿阔叶树种作为造林树种以增强该区森林对气候变化适应性,对三峡库区中西部区域实行综合的森林营林措施,旨在增强森林生态系统的固碳能力、降低自然干扰造成的损失、避免森林生态系统转变为碳源、促进区域森林资源的长期可持续发展并保障长江流域的生态安全。