论文部分内容阅读
图的亏格分布是由著名的图论学家Gross上世纪80年代引入的,它是从整体上刻划图在给定的可定向曲面上的嵌入数量的分布情况,是图的一个重要拓扑不变量.其理论在判断图同构、复代数曲线模空间计算、理论物理中的量子场论、弦理论等领域中有应用.自上个世纪以来,国内外许多著名学者投入到这一领域的研究.如Gross、 Mohar、Stahl、Robertson、 Seymour、 White、Tucker、 Bonnington等等,以及国内刘彦佩、黄元秋、杨元生、蔡俊亮、任韩、郝荣霞、陈仪朝等人.但是Thomassen已经证明了计算一般图的亏格分布是一个NP-完备问题.由于其难度,到目前为止有关亏格分布的结果并不是很丰富,且能确定其亏格分布的图类基本上结构比较特殊,很多方法无法直接推广到一般的图形上.本文试图用一些新的方法探讨若干图类的亏格分布,已经取得了以下几个方面的结果: 1.2011年,Gross在文献[15]中研究了根点u,v度均为2的双根图(G,u,v)在其根点自粘合后所得新图的亏格分布.本文第二章,利用删点、加边原理,多种乘法法则,自粘合定理给出了一个双根图在其中一个根点的度为任意大的情形下根点自粘合后图的亏格分布.从而推广了Gross在文献中[15]“两个根点度均为2”的相应结果. 2.研究两个简单图的笛卡尔积的亏格分布问题是拓扑图论的核心问题.本文第三章引入一种新的加边运算,结合图的部分亏格分布,得到了D3×Pn(双极图D3与路Pn的笛卡尔积图)的亏格分布的递推表达式. 3.计算外平面图的亏格分布是拓扑图论关注的一个问题.本文第四章考虑一类5-正则外平面图On的亏格分布.由n个基础图(R1,p,q)迭代粘合可得到一条开放链(Rn,p,q),对图(Rn,p,q)进行修改的加边运算可得到图On.本文利用根-图得到了图(Rn,p,q)的部分亏格分布与图On的亏格分布的迭代计算公式. 4.本文第五章结合运用传递矩阵法与向量积矩阵法,得到了由双路图串联构建而成的两类闭链图的亏格分布计算公式及递推公式.