【摘 要】
:
随着现代通信技术和军事科技的飞速进步,电磁波在军事和生活中的应用日益普及,随之产生的电磁干扰在军事对抗和日常生活中越来越严重,开发高性能的电磁波吸收材料(吸波材料)尤为重要。碳基材料由于具有密度小、介电损耗大和化学稳定性好等优点被广泛应用于吸波领域。近年来,基于金属-有机骨架材料(MOFs)制备的多孔碳基吸波材料延续了MOFs母体的超高比表面积和多孔有序结构,得到了广泛关注。但该种材料具有孔径小、
论文部分内容阅读
随着现代通信技术和军事科技的飞速进步,电磁波在军事和生活中的应用日益普及,随之产生的电磁干扰在军事对抗和日常生活中越来越严重,开发高性能的电磁波吸收材料(吸波材料)尤为重要。碳基材料由于具有密度小、介电损耗大和化学稳定性好等优点被广泛应用于吸波领域。近年来,基于金属-有机骨架材料(MOFs)制备的多孔碳基吸波材料延续了MOFs母体的超高比表面积和多孔有序结构,得到了广泛关注。但该种材料具有孔径小、形态、层级单一的特点,限制了材料的吸收带宽。本文采用水热法制备HKUST-1(Cu)作为前驱体,经过催化、碳化和化学洗涤得到具有多层级孔结构的吸波材料,通过调节材料中孔的大小、分布以及与磁性材料复合,有效调节了材料的阻抗匹配,拓宽了材料的吸收带宽,主要内容如下:(1)通过水热法制备HKUST-1(Cu)作为前驱体,加入七钼酸铵作为催化剂在高温下经催化和碳化得到碳纤维丛状材料(MCFB/Cu),经化学洗涤后得到具有多层级孔结构的碳纤维丛状材料(MCFB)。(2)通过改变催化剂的浓度和高温碳化时间调控MCFB中孔的形态和大小,研究其对吸波性能的影响。通过改变催化剂的浓度优化了多层级孔结构的大小和分布,获得在12.9 GHz处的反射损耗为-70.7 dB的吸波材料,其有效吸收带宽达到4.31 GHz;通过改变高温碳化时间调控MCFB样品中孔的大小和分布,在高温碳化时间为8 h时,得到的MCFB-8h-20%样品在0.8-1.9 mm厚度范围内在Ku、K和Ka波段实现了-10 dB以下的强吸收,密度仅为1.17 cm3/g。该材料优异的吸波性能主要源于多层级孔结构的多重散射和偶极极化。(3)为了进一步拓宽吸收带宽,将稀土材料Y2Co8Fe9与上述介电材料MCFB样品复合制备出MCFB/Y2Co8Fe9电磁复合材料。通过调节MCFB的填充量调控复合材料的介电参数,获得具有良好阻抗匹配和强吸收的高效吸波材料。其中,MCFB的填充量为0.1 wt%时,复合材料表现出最优的吸波性能:厚度为1.44 mm时最小反射损耗为-64.79dB,有效吸收带宽为5.02 GHz。本文制备出基于MOFs的多孔碳基复合吸波材料,改善了材料的阻抗匹配,拓宽了吸收带宽,为以MOFs为前驱体设计制备高效吸波材料提供了新的思路。
其他文献
最近几年以来,人们对稀土配位聚合物的设计与合成投入了广泛的科学关注。其中,发光稀土配位聚合物是一个活跃的研究领域。由于在稀土配位聚合物中存在着金属中心和有机配体之间电子密度的相互作用,故而使稀土配位聚合物具有独特的发光特性。此外,配位聚合物提供了独特的发光和电子性能。它的相关电子性能可以通过改变其化学结构来调节,而化学结构又可以通过在分子水平上调节金属与配体的相互作用来控制。聚合物也被公认是配位聚
纹理图像分割是计算机视觉中的经典问题,其将纹理图像划分为不同的纹理区域。作为一项关键技术,纹理图像分割已经广泛用于许多视觉应用中,如自动机器人导航,遥感图像分析和医学图像分析。纹理图像分割关键的一点是要正确地找出不同纹理区域内的纹理基元。这个任务可以被视为挖掘高维纹理图像的低维子结构的过程,其可以通过基于字典学习的稀疏表达来有效地完成。本文专注于研究用于纹理图像分割的稀疏表达模型。在实际场景中,纹
蛋白质是重要的生物活性分子,不仅参与着几乎所有正常的生理过程,而且其异常表达还与癌症、爱滋病、糖尿病等多种重大疾病相关。因此,针对重大疾病相关的蛋白质标志物进行高
2001年,唐本忠课题组发现了一类在稀溶液中不发光或发光微弱而在聚集状态下发光增强的化合物,并将其命名为聚集诱导发光(AIE)物质。传统荧光化合物具有的聚集荧光猝灭效应(AC
因为声发射技术本身有着动态性、敏感性、整体性和及时性以及具有不被监测对象的结构复杂度所影响的优点,所以,声发射技术是一种可实现实时监控的一种检测手段,常被用于检测重要机械设备的核心部件。但是,由于机械设备大量界面结构的存在,故障与特征信号间的映射关系比较复杂,导致故障检测结果准确性较低以及经常出现误报等情况。而且,信号的衰减除了和界面这一因素相关外,还与界面间存在其他介质有关系。针对这一问题,本文
电解水制氢被认为是一种清洁有效的方法去解决化石燃料所引起的能源危机和空气污染问题。电催化水分解涉及到析氧反应(OER)和析氢反应(HER)两个半反应。因此,阴极和阳极都需要高效率,低成本和稳定性好的催化剂,以减少激活HER反应和OER反应所需的能量,从而实现工业化高效制氢。与HER仅涉及双电子转移的过程相比,阳极上的OER是四电子转移过程且反应过程中有中间体生成,反应过程和机理更为复杂,这就使得析
国际音标作为传统的词汇教学手段,目前仍被广泛应用于词汇教学中,但因其抽象性与复杂性,是否适用于小学生词汇学习一直具有争议性。近年,自然发音法逐渐被引入小学英语课堂,但这种方法是否适合中国学生还尚不明确。基于此,本研究对基于国际音标的自然拼读法在小学词汇教学的应用进行研究,并对实施过程中出现的问题进行了分析,旨在为小学英语词汇教学提供参考。研究问题主要有三个:(1)基于国际音标的自然拼读法对学生的词
芝麻菜(Eruca vesicaria subsp.sativa)是十字花科芝麻菜属植物,具有很强的环境适应能力,耐旱性状尤其突出,是目前最耐旱的油料作物之一。研究表明海藻糖在提高植物抗寒、抗旱、耐盐碱、耐渍以及抗高温等方面具有十分重要的作用。海藻糖磷酸磷酸酶(Trehalose-phosphate Phosphatase,TPP)是磷酸海藻糖形成海藻糖的关键酶。本研究以抗旱/敏感型芝麻菜为材料,
本研究试图在学习进阶的框架中了解学生思维发展路径,有针对性的构建出基于学习进阶的磁场核心概念的教学设计,以帮助学生更好地掌握高中磁场的核心概念,顺利地由学习进阶的低层级达到高层级。本研究完成的主要内容有:1.通过文献查阅,找出适合本研究对象的磁场核心概念的学习进阶框架;2.针对该学习进阶的框架内容,结合以学习进阶为基础的科学概念教学设计模型,设计出基于学习进阶的磁场核心概念教学设计六份;3.在云南
随着工业化进程的加快,我国的工农业的发展势态十分乐观,伴随着巨大效益的同时我国的生态环境问题也值得关注,其中水体污染一直是公众关注的焦点问题,当前阶段治理重金属污染水体的有效方法为吸附法。利用紫贻贝壳粉作为绿色环保吸附剂,不仅将大量固体废弃贝类变废为宝,改善了生态环境,实现了资源化利用,还能优化吸附镉离子的具体条件为人类提供宝贵的理论现实依据。本文利用扫描电镜(SEM)、能谱分析(EDS)、红外光