【摘 要】
:
近年来,线性时滞系统的稳定性问题的研究取得了很多成果,大量的文献对线性时滞不确定系统的鲁棒或H_∞控制问题进行了研究。本文研究时滞依赖H_∞滤波,针对鲁棒H_∞滤波问题,
论文部分内容阅读
近年来,线性时滞系统的稳定性问题的研究取得了很多成果,大量的文献对线性时滞不确定系统的鲁棒或H_∞控制问题进行了研究。本文研究时滞依赖H_∞滤波,针对鲁棒H_∞滤波问题,在线性不确定时滞系统中,当时滞函数是一致连续有界时,利用一个新的积分不等式,我们得到新的时滞依赖的充分条件,设计一个合适的滤波器,它保证滤波误差系统是渐近稳定的,且H_∞干扰衰减在规定范围内。
其他文献
自适应有限元方法在偏微分方程的数值求解中发挥着极其重要的作用,其根本的指导思想就是用尽量少的自由度来获得尽量高的数值精度。该方法的前提是建立有效的后验误差估计指
本文分四个阶段总结和比较了文献中人脸识别各个阶段的主要研究成果。人脸识别技术在最近几十年,有了很好的发展,但是在识别算法的普遍性问题,大数据人脸识别,识别的时间、准确率
本文在Luo-Rudyl991[12]心脏电生理数学模型的基础上,主要研究了心肌单细胞膜动作电位以及与动作电位相关的其他电生理现象,二维均质心肌组织平面上的折返现象和螺旋碎裂现象
延迟积分微分方程在物理学、生物学、化学、医学、人口学、经济学、自动控制等众多领域有广泛应用,其理论和算法研究具有毋庸置疑的重要性,近三十年来,延迟积分微分方程的算法理
本文通过能量函数,利用两种不同的方法研究Ω(?) R~n含有源项、阻尼项和粘弹性项的非线性波动方程的初边值问题:其中a,b>0,p>2,m≥1,Ω为R~n(n≥1)中的有界区域,且有光滑边界。
对于偏微分方程最优控制问题的研究已有大量工作.目前,已经有很多数值方法可以用来解决最优控制问题.在现有文献中大多是采用标准有限元方法来研究最优控制问题,而关于混合有
Levy单是一种特殊的两参数独立增量过程,它把最典型的布朗单(连续型)和泊松单(离散型)综合在一块进行研究。它在物理学、工程技术学、经济学、金融学等众多领域中有着十分重
主要介绍凿岩机钻孔偏差出现的原因,分析了影响钻孔偏差的各种要素,提出降低钻孔偏差的方法,从而解决因钻孔偏差大、爆破效果不良的问题。
This paper mainly introduces th