论文部分内容阅读
随着新军事变革不断深入,高技术武器高速发展,捷联惯导系统工作环境发生着巨大的变化,如何在恶劣温度环境下提供精确、稳定的位置、姿态信息,是捷联惯导系统研究所面临的艰难挑战。在激光捷联惯导系统正常工作时,系统内部温度场分布复杂,温度对系统各个部件影响各有差异,增加了系统温度误差建模与补偿的难度。论文从激光陀螺捷联惯性系统误差机理入手,对系统中陀螺组件和加速度计组件分别进行温度误差建模,并研究了对应的标定方法。文章通过分析陀螺组件的输入输出模型,结合激光陀螺器件级刻度因子、零偏的温度多项式模型,研究了陀螺组件零偏、刻度因子以及安装误差的温度模型,并在捷联惯性系统的常温标定方法的基础上,讨论了一种基于三轴温控转台的陀螺组件刻度因子、零偏以及安装误差角温度标定方法。本文根据石英挠性加速度计组件的结构分析了其温度特性,通过分析加速度计组件的输入输出模型,将刻度因子矩阵分解为加速度计器件刻度因子与安装误差两个部分分别进行分析,结合加速度计零偏的分析,研究了加速度计组件零偏、刻度因子以及安装误差的温度模型。在捷联惯导系统的常温标定方法的基础上,讨论了一种基于三轴温控转台的加速度计组件刻度因子、零偏以及安装误差角温度标定方法。论文介绍了一种基于双轴位置单轴速率温控转台的加速度计组件温度标定方法,通过对实验数据的分析处理,得出加速度计组件温度误差模型参数,并且运用重力测量误差检验了加速度计组件温度模型的有效性。通过总结一次性温度标定方法的不足,提出温度参数修正的思想。在针对加速度计组件测量模型的深入分析之后,从重力测量误差入手,归纳出修正方法的优化模型。考虑到优化模型自身的特点,文章考虑使用基本粒子群算法对参数进行优化,并通过了静态重力测量误差实验的检验,取得了较好的效果。通过参数修正,增强了加速度计组件温度模型参数的重复性与时效性,为温度补偿方法的广泛应用提供了工程方法支持。