论文部分内容阅读
基于深度学习的语音截幅恢复
【出 处】
:
内蒙古大学
【发表日期】
:
2021年01期
其他文献
极化码由土耳其毕尔肯大学的Ar(?)kan教授于2009年首次提出,是一种理论上被证明可达信道容量的编码方案。对于极化码的译码方案,有两种主流算法,连续删除(Successive Cancellation,SC)译码算法和置信传播(Belief Propagation,BP)译码算法,但是这两类算法都受限于译码性能与时延问题,不能满足下一代通信系统对高速率、低时延的要求,所以就需要探索一种译码新思
近年来,遥感技术的成熟和深度学习的发展为舰船智能化检测带来了新浪潮。舰船目标检测作为国防建设和海洋监测应用中关键环节而备受关注。然而,该研究仍然存在以下两个挑战:(1)现有合成孔径雷达数据集中,不同图像的舰船目标较小,常规方法容易受到复杂背景的干扰,严重影响舰船检测的准确率,即复杂背景舰船小目标检测问题;(2)现有光学遥感数据集中,同一幅图像中舰船目标在尺寸上差异大,在分布上密集,即多尺度高密集舰
随着信息化时代的到来,社会各领域出现了越来越多的智能化终端设备和交换节点,网络业务类型逐渐多样化,网络规模扩大化,这给网络交换技术带来了新的挑战。当前,卫星通信、智能汽车、远程控制、自动化工业等高科技领域对大规模业务传输提出了新的要求,采用CSMA/CD技术的传统以太网已经无法满足其对于实时性和可靠性的需求,而现有的TTE/TSN网络主要完成端口交换而不进行时间片的位移变换,因此必须采用集中路由规
高光谱图像分类旨在将高光谱图像中的所有像元分配至一组特定的类别中去,是高光谱图像处理领域最活跃的研究课题之一。同普通自然图像不同,高光谱图像较高的光谱维度,较高的空间变异性与光谱变异性,为高光谱图像分类任务带来挑战。卷积神经网络天然适合处理图像数据,且其在自然图像上的优异表现,很自然地被引入高光谱图像分类中。因此本文基于卷积神经网络设计高光谱图像分类框架。同时借鉴生物的视觉注意机制,为网络设计注意
量子信息学作为量子物理和信息科学交叉形成的一门新的学科,发展至今,在理论和实验上都已经取得了丰硕的成果。量子通信是量子信息科学的一个重要的分支,以量子态作为载体传输信息并且利用量子的独特的物理性质来保证通信的安全性和高效性。量子通信从起初的单光子通信到现在利用量子的纠缠特性进行通信,在不断的突破与进步。量子远程制备作为量子通信的主要研究内容,是实现量子远程通信、量子网络、量子计算的重要一环,在量子
随着集成电路的生产工艺不断进步,显示驱动芯片得以飞速发展。显示驱动芯片规模不断扩大,承担了更多的功能。显示驱动芯片结构复杂程度的不断上升,不仅会对芯片设计提出更高的要求,也会给芯片成品测试带来更多的挑战。现如今的消费电子市场芯片产品迭代周期不断缩短,为提高芯片的品质,降低芯片成本,减少芯片测试时间,可测试性设计逐渐占据了重要地位。可测试性设计主要方法是将芯片测试纳入芯片的设计规格中,通过在芯片中添
近年来,人工智能和集成电路领域的飞速发展对健康医学产生了深远的影响,机器学习可以利用病人大量的临床数据对其病情做精确地分析,智能计算机系统可以为卫生专业人员提供治疗方案。智慧医疗在电子信息、生物医学、数据分析等领域进行深度交叉融合,在引领未来医疗时代等方面具有重要意义。植入式生物医疗芯片作为智慧医疗的硬件载体,逐渐成为近年来的研究热点。植入式生物芯片需要植入生物体内获取被测者的生理参数,因此需要有
声源定位包括利用传感器阵列测量声场中的声学量和利用反向传播算法重建声源在声场的分布图像。目前声源定位在工业生产、医疗、地质研究和军事等领域都有着广泛的应用。麦克风阵列信号接收作为声源定位过程的关键步骤,其对声源信号采样的质量直接影响着后续的声源定位准确性。根据采样定理,麦克风阵列接收信号频率的上限受到阵元间距影响,下限受到阵列大小影响。所以对于超出频率限制范围声源信号,麦克风对信号的采样质量会下降
图像分类任务是计算机视觉领域的基础问题。随着互联网和人工智能技术的快速发展,每天都会产生大量的图像数据。图像分类技术已经应用到很多生活和工作场景中,因此很多互联网公司和科研机构将图像分类作为研究重点。目前基于深度学习算法的图像分类已成为主流,但性能提升的同时模型也越来越大,如何在提高分类正确率的同时减少模型参数量是一个具有挑战性的课题。本文针对该问题提出了新颖的轻量分割卷积、沙漏模块、多尺度注意力