磺胺和盘尼西林双适体阻抗传感器的构建与应用研究

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:damoxian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,因滥用和药厂废水排放而导致的自来水药物污染事件偶有发生。作为生活用水非必检指标且没有相关标准出台,各类药物的意外污染给饮用水安全带来了不可测因素,预防检测难度大,直接影响到人们身心健康。建立简单且有效的分析技术以实现对水质偶发污染的及时监控具有必要性。即时在线式微器件技术是满足这一监控要求的重要发展方向。
  电化学测试与适体技术的结合为这一微器件技术的发展开辟了新途径。在电化学方法中,阻抗谱技术常作为首选测试手段,其成本低、易操作、灵敏、直观且快速的优势特点可较好满足微器件检测参数要求,具有可行性。传统适体电化学检测方法的建立普遍采用单一适体序列作为识别探针。从阻抗产生原理角度,多重适体序列具有更多反应位点,有望提高阻抗值而改善方法灵敏度。本论文基于这一思想,将适体对接编辑技术引入传感器构建设计,建立了两个基于适体-靶标(抗生素分子)相互作用体系的阻抗谱分析方法,以期为新技术发展提供备选方法资源和探索生活用水应用检测可能性。具体工作如下:分别建立了自来水中磺胺二甲氧嘧啶(SMD)和盘尼西林(PEN)的双适体阻抗传感检测方法。借助分子模拟技术对比揭示了两类单、双适体/靶标复合物体系的分子作用机制;采用电化学测试方法对传感过程及其影响参数进行了优化与表征,并系统考察了所建立方法的综合分析性能。结果显示,相比单适体,双适体具有更多反应位点,SMD体系与PEN体系分别以逆-D-5T-SMD和顺-D-5T-PEN对接方式结合最稳定,利于获得高阻抗值。在优化条件下,方法用于实际自来水样品定量检测,SMD体系与PEN体系线性范围分别为10.0pM-10.0nM和1.0pM-100.0nM,检测限分别为3.4pM和0.3pM,信号响应平衡时间均为~20min;用于定量分析方法学有效性验证加标回收率分别为77.0-85.4%和79.8-92.1%,相对标准偏差(RSD)均小于20%;全部检测均可在60分钟内完成。两个方法在检测速度、灵敏度和易操作性方面表现优异,具有作为即时在线微器件技术备选检测策略方法的潜能。
  
其他文献
含硅聚合物及其材料对日常生活和工业生产具有十分重要的意义并且广泛地应用于各个领域,其产品种类繁多,包括硅油、硅树脂、硅橡胶、硅烷偶联剂及其衍生产品。有机硅材料因具有生物相容性、高透气性、低玻璃化转变温度、低表面能、良好的热性能、氧化稳定性和疏水性等优势而备受赞誉。在过去的数十年,基于超分子作用的有机硅材料由于其优异的性能而备受关注,例如高刚度、高拉伸性、自修复能力、热塑性等。这些优异的特性归因于超
稠油是一种重要的油气资源,在世界石油供应中发挥着越来越重要的作用。但在很多情况下,稠油的低流动性以及蜡或沥青质的沉积造成管路堵塞等问题使其难以输送。目前人们也提出了很多方法降低稠油粘度来方便运输,在所有的降粘方法过程中,化学降粘方法由于其经济、技术上的可行性以及成本的合理性,被认为是最有前景的方法。针对海上稠油的开采问题,我们设计合成了一系列的水溶性降粘剂,并对其降粘效果、降粘机理进行探讨。  本
稀土元素由于具有独特的荧光性质和优异的螯合能力,在各种新型发光材料中的应用十分普遍。利用有机分子与稀土元素之间的能量传递作用提高这类元素的发光性能,一直以来是光学材料领域的重点研究内容。四苯乙烯(TPE)及其衍生物是一类典型的具有聚集诱导发光(AIE)性质的有机荧光分子,将其与稀土纳米材料结合,一方面,TPE衍生物可以作为敏化剂调控稀土元素的发光;另一方面,刚性的无机稀土纳米材料也可以通过限制TP
手性无机纳米材料是当今纳米材料中最具活力的领域之一,它能够将光集中于纳米尺度并且将光与物质的相互作用最大化,使其在最近成为纳米科学中一个新的研究热点。利用光刻技术、分子自组装等技术可以合成手性纳米结构,但是大规模简单的制备三维手性纳米结构仍待研究。在这点上,手性转移是控制手性形态的一种简单有效的方法,但是分子手性转移仅应用于微米级螺旋陶瓷晶体,在数百纳米金属纳米颗粒上鲜有报道,本论文主要探讨了在手
工业革命以来,钢铁材料在我们的日常生活中扮演越来越重要的角色,应用遍及国民生产的方方面面。为了对钢铁进行保护,延长其使用寿命,最常用的方法就是对其表面进行涂装处理。而在涂装前需要经过一道预处理过程,在钢铁表面形成一层预处理层,预处理层一方面可以保护钢铁基底减缓腐蚀,另一方面还可以提高有机外涂层与钢铁基底的结合力,起到“双面胶”的作用。过去一直采用的预处理层技术存在严重污染问题,如铬酸盐钝化处理液中
学位
传统硅基电子器件受量子效应的限制,成为一项巨大的挑战,因此,寻求能够替代传统硅基电子器件的新兴分子器件是大势所趋。对分子器件电子输运性能的模拟及调控,已经成为纳米尺度器件的主要研究方向之一。基于电子输运性能,可以设计分子传感器、分子开关、隧道二极管等分子器件。卟啉分子因具有环型共轭平面结构,内环中心可与金属配位生成金属卟啉而广受研究者青睐。本文采用密度泛函理论(Density Functional
传统的化石能源的储备量日益减少,同时化石能源的过量使用也带来了温室效应等环境问题,因此迫切需要开发环境友好的新能源以解决上述问题。氢气能量密度高且绿色环保,因而制备氢气以替代化石能源是一个潜在的可行方案。电催化分解水制氢是一种清洁无碳排放的有效方法,其中催化剂是决定催化制氢效率和成本的关键因素之一。金属铂等贵金属催化剂在以往的电解水制氢过程中被广泛采用,该类催化剂有着优异的电催化性能,但是它们的地
尾水中含磷物质的超标排放是导致水体富营养化的重要原因之一,水体富营养化会危害水生动物和人体健康,降低水体磷含量对防治水体富营养化具有重要意义,因此污水除磷技术已成为目前污水处理领域的研究热点。混凝法除磷具有高效低耗、设计和操作简单等优点,已广泛应用于废水除磷,混凝除磷法中除磷药剂被认为是影响除磷效率、处理成本、工艺简化程度的关键因素之一,本论文针对除磷混凝剂及其混凝过程展开研究。以常规钙盐、铝盐和
学位
抗生素作为兽药在奶牛饲养中获得了普遍应用。因代谢作用常导致牛奶中含有一定量残留。长期食用抗生素超标的牛奶会对人体产生毒副作用,轻者引起过敏和耐药性等,重者会导致休克甚至死亡。近年来,新种类药物不断涌现,抗生素残留问题日趋复杂,为食品安全带来新难题和新挑战。开发新型快速现场分析技术以应对日益提高的检测要求具有迫切性和必要性。作为未来药物检测的重要发展方向之一,适体电化学传感技术获得了快速发展。其自身
氰基是一类重要的有特殊功能的有机官能团,广泛存在于医药、农药、染料等化学品的分子结构中。具有光学活性的含有氰基官能团的化合物在药物分子中占有突出地位。α,β-不饱和羰基化合物的不对称氰化反应是在分子中引入氰基官能团的重要方法,通过不对称共轭氰化加成获得的具有光学活性的β-氰基化合物可以很容易地转化为具有治疗作用的重要化合物,如GABA类似物和1,2-二羧酸,这些化合物在治疗神经疾病方面起到至关重要
学位