论文部分内容阅读
广义上,铁路信号系统是集中指挥、分散控制的综合性闭环控制系统,其各组成部分通过信息技术有机结合,构成了以安全设备为基础,兼具行车指挥、列车运行控制、集中监测等功能的复杂系统。列车运行控制系统是信号系统的重要组成部分,是列车安全间隔控制的核心保障系统,而安全间隔控制的根本目的是防止列车发生碰撞事故。随着通信技术、传感技术和智能技术的发展,下一代智能轨道交通系统必然是集成先进信息技术和智能技术,实现轨道交通移动装备、固定设施和服务需求状态的全息化感知、诊断、辨识和决策的系统。预防列车碰撞安全事故仍然是研究新一代智能轨道交通系统的主线,列车碰撞防护技术和措施也在不断的改进完善之中。首先,列车与列车之间采用间接信息传递的方式实现运行姿态感知从而实现列车碰撞防护的方法是当前最为常用的方法,但由于此种方式主要依赖地面控制中心,使得轨道交通列车间隔控制的可靠性无法得到有效提升。其次,当前研究还主要停留在列车与地面双向无线信道的电波传播机制以及碰撞防护系统架构上,对于车车间无线信道的传播特性、车载设备业务接入和资源复用模型等研究还不够完善。另外,目前列车碰撞防护研究的对象主要集中在列车碰撞列车、列车碰撞异物方面,尽管轨道交通运营管理部门逐步推进人防、物防、技防“三位一体”安全体系建设,对于列车碰撞轨旁作业人员的防护技术还比较欠缺。为此,在分析当前研究不足的基础上,深入研究了当前列车碰撞防护的相关理论和方法,利用车车直接通信技术、多频段收发技术、微波雷达多目标探测等现代技术,从系统的角度研究了列车车车碰撞防护和车人碰撞防护的关键技术及其实现方法:首先,在分析目前由于车-地通信网络或地面控制中心功能劣化造成列车间“盲视”问题的基础上,提出了基于车车直接通信的碰撞防护系统叠加既有列控系统的方法,利用车车直接通信技术实现列车间直接交互信息并感知运行姿态,从而实现列车间碰撞防护。其次,在研究列车碰撞防护中需要进行信息交互的设备和新一代轨道智能运输系统对铁路信号设备机器类通信业务需求显著性的基础上,提出了铁路信号设备机器类通信业务预测模型分类方法,并设计了一种基于马尔科夫调制泊松过程的业务模型,通过仿真验证了该模型机器类通信业务与铁路现场信号设备业务分布具有较高的一致性,可实现复杂度与高准确度的良好平衡。另外,基于微波雷达的全天候、高灵敏性等特点,结合当前现场作业安全防护中存在的恶劣天气影响瞭望距离、现场安全员渎职无法及时预警及基于GPS的列车接近预警系统构造复杂等问题,将雷达多目标侦测技术引入到车人碰撞防护中,提出了一种基于雷达探测列车并预警的车人避碰方法。在此基础上还将雷达与机器视觉侦测技术结合,弥补了雷达探测误警率高的问题,进一步完善了列车碰撞防护的车人避碰策略。最后,仿真设计了车车避碰多频段直接通信系统,验证了该系统能够满足车车避碰的性能需求。设计和实现了车人避碰系统的原型装置,并在现场进行了相关试验,表明该车人避碰系统地形环境适应性强。