论文部分内容阅读
熔融沉积快速成型技术(Fused Deposition Modeling,FDM)是增材制造技术中应用较为广泛的制造技术之一,因其设备结构简单、制造成本低、操作安全等优点,广泛应用于各个领域。熔融沉积快速成型技术的成型过程是由熔融态丝材一层一层堆积而成的,成型过程中熔融态与固态的变化会发生相变,这就会在层间出现应力,造成成型件变形,丝材冷却收缩也会造成成型误差。成型件精度问题是影响其应用的重要问题,因此在众多熔融沉积快速成型技术研究中成为重要课题。本文主要利用有限元模拟仿真分析及实验研究方法对成型件精度问题进行研究,其主要研究内容及方法如下:1)对熔融沉积快速成型技术中常见的成型精度问题进行了分析,对影响成型件成型精度的最主要问题翘曲变形进行重点分析,从成型件成型原理方面进行成因分析,并通过分析对翘曲变形建立了理论模型。在理论模型基础上结合成型工艺过程,分析出最关键的影响因素。2)运用传热学相关理论对温度因素影响的模拟过程进行假设,利用ANSYS软件APDL命令流及生死单元技术对成型件进行有限元模拟仿真。有限元模拟仿真时,对成型机热源中的热床温度及喷头温度对成型件的影响进行热分析及应力分析。对热床温度及喷头进行热分析时,主要考察其层间温度差的变化情况,通过层间温度差查看其对成型件的影响。在利用热—结构耦合进行应力分析时,得出不同温度层间应力情况及成型件翘曲变形情况,利用成型件翘曲变形量得出最佳热床温度及喷头温度。3)根据ANSYS模拟情况,进行成型实验。首先进行成型件在热床温度及喷头温度影响下单因素成型试验,通过测量成型件尺寸误差及形状误差得到成型件变形情况。对成型件形状误差进行重点研究,利用回归设计方法对热床温度及喷头温度进行两个因素实验设计,根据设计参数进行成型试验,利用Design-Expert软件对数据进行分析,并得出最优参数组合。4)通过分析热床存在的问题,进行了热床优化,提出了一种新型加热丝分布热床工作平台。利用ANSYS模拟仿真软件对优化前后的两种热床工作平台进行热分析,得到其散热过程中的温度场分布,得出优化后热床的优势。根据模拟结果,利用Altium Designer软件对市场上常用hotbed-MK3型PCB铝基板热床进行优化设计,并对优化前后的两种热床工作平台进行成型件成型实验,通过对比实验发现优化后的热床工作平台成型效果更好。