论文部分内容阅读
(黑龙江龙新化工有限公司 黑龙江 安达 151401)
我国经济发展的快步伐加大了对电的需求量,对电气设备、分配电能的电力电缆应用越来越广泛。目前,电力电缆所产生的故障在所有供电故障中占了相当大的比重。这种故障分为两类。
第一类。因缆芯的连续性受到破坏,形成断线和不完全断线。
第二类。因缆芯之间或缆芯对外皮间的绝缘受到破坏,形成短路接地或闪络击穿。
1. 故障的类型 电力电缆根据故障性质可分为低电阻接地或短路故障、高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。
2. 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,现将常见的几种主要原因归纳如下:
2.1 机械损伤。 机械损伤引起的电缆故障占电缆事故很大的比例。有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才发展成故障。造成电缆机械损伤的主要有以下几种原因:(1)安装时损伤;(2)直接受外力损坏;(3)行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;(4)因自然现象造成的损伤。
2.2 绝缘受潮。 绝缘受潮后引起故障。造成电缆受潮的主要原因有:(1)因接头盒或终端盒结构不密封或安装不良而导致进水;(2)电缆制造不良,金属护套有小孔或裂缝;(3)金属护套因被外物刺伤或腐蚀穿孔。
2.3 绝缘老化变质。 电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。过热会引起绝缘老化变质。电缆内部气隙产生电游离造成局部过热,使绝缘碳化。电缆过负荷是电缆过热很重要的因素。安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、穿在干燥管中的电缆以及电缆与热力管道接近的部分等都会因本身过热而使绝缘加速损坏。
2.4 过电压。 大气与内部过电压作用,使电缆绝缘击穿,形成故障,击穿点一般是存在缺陷。
2.5 设计和制作工艺不良。 中间接头和终端头的防水、电场分布设计不周密,材料选用不当,工艺不良、不按规程要求制作会造成电缆头故障。
2.6 材料缺陷。 材料缺陷主要表现在三个方面。一是电缆制造的问题,铅(铝)护层留下的缺陷;在包缠绝缘过程中,纸绝缘上出现褶皱、裂损、破口和重叠间隙等缺陷;二是电缆附件制造上的缺陷,如铸铁件有砂眼,瓷件的机械强度不够,其它零件不符合规格或组装时不密封等;三是对绝缘材料的维护管理不善,造成电缆绝缘受潮、脏污和老化。
2.7 护层的腐蚀。 由于地下酸碱腐蚀、杂散电流的影响,使电缆铅包外皮受腐蚀出现麻点、开裂或穿孔,造成故障。
2.8 电缆的绝缘物流失。 油浸纸绝缘电缆敷设时地沟凸凹不平,或处在电杆上的户外头,由于起伏、高低落差悬殊,高处的绝缘油流向低处而使高处电缆绝缘性能下降,导致故障发生。
3. 电缆故障探测的步骤 电缆故障的探测一般要经过诊断、测距、定点三个步骤。(1)电缆故障性质诊断。电缆故障性质的诊断,即确定故障的类型与严重程度,以便于测试人员对症下药,选择适当的电缆故障测距与定点方法。(2)电缆故障测距。电缆故障测距,又叫粗测,在电缆的一端使用仪器确定故障距离。(3)电缆故障定点。电缆故障定点,又叫精测,即按照故障测距结果,根据电缆的路径走向,找出故障点的大体方位来,在一个很小的范围内,利用放电声测法或其它方法确定故障点的准确位置。
3.1 电缆故障性质的诊断。 所谓诊断电缆故障的性质,就是指确定:故障电阻是高阻还是低阻;是闪络还是封闭性故障;是接地、短路、断线,还是它们的混合;是单相、两相,还是三相故障。
3.2 常用的电缆故障测距检测方法。(1)电桥法。 将被测电缆终端故障相与非故障相端接,电桥两臂分别接故障相和非故障相,通过调节电阻使得电桥达到平衡,通过公式计算出故障点的距离。目前现场中电桥法用的越来越少,但是对于一些没有明显的低压脉冲反射,又不容易用高压击穿的特殊故障,使用电桥法往往可以解决问题。电桥法的优点是简单、方便、精确度高,但其主要缺点是不适用于高阻抗与闪络性故障以及相间短路性故障。
(2)低压脉冲反射法。 测试时向电力电缆的故障相注入低压脉冲。该脉冲沿电缆传播到阻抗不匹配点即故障点时,脉冲产生反射回送到测试点由仪器记录下来,根据发射脉冲与反射脉冲的往返时间差和脉冲在电缆中传播的波速度,便可计算出故障点离测试点的距离。该方法的优点是简单直观,不需要知道电缆的准确长度等原始资料;缺点是不能适用于高阻抗与闪络性故障,需要知道电缆的走向。
(3)脉冲电流法。 脉冲电流法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端和故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。
(4)二(多)次脉冲法。 针对高阻接地时波形难判断的情况,近几年出现了二次脉冲理论,并在实践中取得良好的效果。首先对故障电缆发射一个低压脉冲,脉冲在高阻的故障点由于特性阻抗变化不大,不会产生反射。脉冲在另一终端被反射回来后,仪器将这个“完好”波形存储起来。然后对故障点电缆发射一个高压脉冲,故障点被击穿,击穿瞬间变成低阻故障,此时仪器触发一个低压脉冲,低压脉冲在被击穿的故障点处被反射回来。仪器把两次低压脉冲的波形叠加起来,交叉点的位置就是故障点位置。这种方法使操作者很容易判断故障点波形,而且误差较小。
3.3 常用的电缆故障定点方法。(1)声测定点法。 声测定点法是电缆故障的主要定点方法,主要用于测量高阻与闪络性故障,测量时使用高压设备使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点,缺点是受外界干扰较大。
(2)声磁法。 在向电缆施加冲击高压信号使故障点放电时,会在电缆的外皮与大地形成的回路中感应出环流来,这一环流在电缆周围产生脉冲磁场,在监听到声音信号的同时,接受到脉冲磁场信号,即可判断该声音是由故障点放电产生的,故障点就在附近。
另外,还有音频感应法。
我国经济发展的快步伐加大了对电的需求量,对电气设备、分配电能的电力电缆应用越来越广泛。目前,电力电缆所产生的故障在所有供电故障中占了相当大的比重。这种故障分为两类。
第一类。因缆芯的连续性受到破坏,形成断线和不完全断线。
第二类。因缆芯之间或缆芯对外皮间的绝缘受到破坏,形成短路接地或闪络击穿。
1. 故障的类型 电力电缆根据故障性质可分为低电阻接地或短路故障、高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。
2. 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,现将常见的几种主要原因归纳如下:
2.1 机械损伤。 机械损伤引起的电缆故障占电缆事故很大的比例。有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才发展成故障。造成电缆机械损伤的主要有以下几种原因:(1)安装时损伤;(2)直接受外力损坏;(3)行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;(4)因自然现象造成的损伤。
2.2 绝缘受潮。 绝缘受潮后引起故障。造成电缆受潮的主要原因有:(1)因接头盒或终端盒结构不密封或安装不良而导致进水;(2)电缆制造不良,金属护套有小孔或裂缝;(3)金属护套因被外物刺伤或腐蚀穿孔。
2.3 绝缘老化变质。 电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。过热会引起绝缘老化变质。电缆内部气隙产生电游离造成局部过热,使绝缘碳化。电缆过负荷是电缆过热很重要的因素。安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、穿在干燥管中的电缆以及电缆与热力管道接近的部分等都会因本身过热而使绝缘加速损坏。
2.4 过电压。 大气与内部过电压作用,使电缆绝缘击穿,形成故障,击穿点一般是存在缺陷。
2.5 设计和制作工艺不良。 中间接头和终端头的防水、电场分布设计不周密,材料选用不当,工艺不良、不按规程要求制作会造成电缆头故障。
2.6 材料缺陷。 材料缺陷主要表现在三个方面。一是电缆制造的问题,铅(铝)护层留下的缺陷;在包缠绝缘过程中,纸绝缘上出现褶皱、裂损、破口和重叠间隙等缺陷;二是电缆附件制造上的缺陷,如铸铁件有砂眼,瓷件的机械强度不够,其它零件不符合规格或组装时不密封等;三是对绝缘材料的维护管理不善,造成电缆绝缘受潮、脏污和老化。
2.7 护层的腐蚀。 由于地下酸碱腐蚀、杂散电流的影响,使电缆铅包外皮受腐蚀出现麻点、开裂或穿孔,造成故障。
2.8 电缆的绝缘物流失。 油浸纸绝缘电缆敷设时地沟凸凹不平,或处在电杆上的户外头,由于起伏、高低落差悬殊,高处的绝缘油流向低处而使高处电缆绝缘性能下降,导致故障发生。
3. 电缆故障探测的步骤 电缆故障的探测一般要经过诊断、测距、定点三个步骤。(1)电缆故障性质诊断。电缆故障性质的诊断,即确定故障的类型与严重程度,以便于测试人员对症下药,选择适当的电缆故障测距与定点方法。(2)电缆故障测距。电缆故障测距,又叫粗测,在电缆的一端使用仪器确定故障距离。(3)电缆故障定点。电缆故障定点,又叫精测,即按照故障测距结果,根据电缆的路径走向,找出故障点的大体方位来,在一个很小的范围内,利用放电声测法或其它方法确定故障点的准确位置。
3.1 电缆故障性质的诊断。 所谓诊断电缆故障的性质,就是指确定:故障电阻是高阻还是低阻;是闪络还是封闭性故障;是接地、短路、断线,还是它们的混合;是单相、两相,还是三相故障。
3.2 常用的电缆故障测距检测方法。(1)电桥法。 将被测电缆终端故障相与非故障相端接,电桥两臂分别接故障相和非故障相,通过调节电阻使得电桥达到平衡,通过公式计算出故障点的距离。目前现场中电桥法用的越来越少,但是对于一些没有明显的低压脉冲反射,又不容易用高压击穿的特殊故障,使用电桥法往往可以解决问题。电桥法的优点是简单、方便、精确度高,但其主要缺点是不适用于高阻抗与闪络性故障以及相间短路性故障。
(2)低压脉冲反射法。 测试时向电力电缆的故障相注入低压脉冲。该脉冲沿电缆传播到阻抗不匹配点即故障点时,脉冲产生反射回送到测试点由仪器记录下来,根据发射脉冲与反射脉冲的往返时间差和脉冲在电缆中传播的波速度,便可计算出故障点离测试点的距离。该方法的优点是简单直观,不需要知道电缆的准确长度等原始资料;缺点是不能适用于高阻抗与闪络性故障,需要知道电缆的走向。
(3)脉冲电流法。 脉冲电流法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端和故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。
(4)二(多)次脉冲法。 针对高阻接地时波形难判断的情况,近几年出现了二次脉冲理论,并在实践中取得良好的效果。首先对故障电缆发射一个低压脉冲,脉冲在高阻的故障点由于特性阻抗变化不大,不会产生反射。脉冲在另一终端被反射回来后,仪器将这个“完好”波形存储起来。然后对故障点电缆发射一个高压脉冲,故障点被击穿,击穿瞬间变成低阻故障,此时仪器触发一个低压脉冲,低压脉冲在被击穿的故障点处被反射回来。仪器把两次低压脉冲的波形叠加起来,交叉点的位置就是故障点位置。这种方法使操作者很容易判断故障点波形,而且误差较小。
3.3 常用的电缆故障定点方法。(1)声测定点法。 声测定点法是电缆故障的主要定点方法,主要用于测量高阻与闪络性故障,测量时使用高压设备使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点,缺点是受外界干扰较大。
(2)声磁法。 在向电缆施加冲击高压信号使故障点放电时,会在电缆的外皮与大地形成的回路中感应出环流来,这一环流在电缆周围产生脉冲磁场,在监听到声音信号的同时,接受到脉冲磁场信号,即可判断该声音是由故障点放电产生的,故障点就在附近。
另外,还有音频感应法。