论文部分内容阅读
随着我国经济的发展,社会的进步,大城市的高层建筑越来越多,而同时为了节省土地,分利用地下空间,地下建筑及隧道等工程的大幅度增加,与之相应的基坑开挖越来越深,深基坑工程也随之不断增加。本文主要介绍了深基坑支护的明挖法施工技术。明挖法具有施工简单、快捷、经济、安全的优点,各种建筑物与地下管线都要开挖基坑,一些基坑可直接开挖或放坡开挖,但当基坑深度较深,周围场地又不宽时,一般都采用基坑支护,过去支护比较简单,也就是钢板桩加井点降水,一般能满足基坑安全施工,城市地下与隧道式工程发展初期都把它作为首选的开挖技术,而对于深基坑已不能满足要求。
一、近年来随着基坑深度和体量增大,支护技术也有了较大进展,按功能分常用的有
1.挡土系统:用的有钢板桩、钢筋混凝土板桩、深层水泥搅拌桩、钻孔灌注桩、地下连续墙等。其功能是形成支护排桩或支护挡土墙阻挡坑外土压力。
2.挡水系统:常用的有深层水泥搅拌桩、旋喷桩、压密注浆、地下连续墙、锁口钢板桩等。其功能是阻挡坑外渗水。
3.支撑系统:常用的有钢管与型钢内支撑、钢筋混凝土内支撑、钢与钢筋混凝土组合支撑。其功能是支承围护结构侧力与限制围护结构位移。
二、常见的深基坑支护的类型及其分析
1.直接开挖或放坡开挖。适用于地面开阔和地下地质条件较好的情况。基坑应自上而下分层、分段依次开挖,随挖随刷边坡,必要时采用水泥粘土护坡,其缺点是对周围环境的影响较大。
2.挡土、挡水支护系统。
2.1型钢支护技术:一般使用单排工字钢或钢板桩,基坑较深时可采用双排桩,由拉杆或连梁连结共同受力,也可采用多层钢横撑支护或單层、多层锚杆与型钢共同形成支护结构。钢板桩由带锁口或钳口的热轧型钢制成,目前钢板桩常用的截面形式有U形、Z形和直腹板型。钢板桩由于施工简单而应用较广。但是型钢和钢板桩的施工可能会引起相邻地基的变形和产生噪声振动,对周围环境影响很大,因此在人口密集、建筑密度大的地区,其使用受到限制。且钢板桩本身柔性较大,如支撑或锚拉系统设置不当变形会很大,所以当基坑支护深度大于7m时,不宜采用。同时由于钢板桩在地下室施工结束后需拔出,因此应考虑拔出时对周围地基土和地表土的影响。
2.2深层搅拌支护技术:深层搅拌支护是利用水泥作为固化剂,采用机械搅拌,将固化剂和软土剂强制拌和,使固化剂和软土剂之间产生一系列物理化学反应而逐步硬化,形成具有整体性、水稳定性和一定强度的水泥土桩墙,作为支护结构。适用于淤泥、淤泥质土、粘土、粉质粘土、粉土、素填土等土层,基坑开挖深度不宜大于6m。对有机质土、泥炭质土,宜通过试验确定。
2.3混凝土灌注排桩支护技术:排桩支护是指柱列式间隔布置钢筋混凝土挖孔、钻孔灌注桩作为主要挡土结构的一种支护形式。柱列式间隔布置包括桩与桩之间有一定净距的疏排布置形式和桩与桩相切的密排布置形式。柱列式灌注桩作为挡土围护结构有很好的刚度,但各桩间的联系必须在桩顶浇注较大截面的钢筋混凝土帽梁加以可靠联接。为防止地下水并夹带土体颗粒从桩间孔隙流入坑内,应同时在桩间或桩背采用高压注浆,设置深层搅拌桩、旋喷桩等措施,或在桩后专门构筑防水帷幕。灌注桩施工简便,可用机械钻(冲)孔或人工挖孔,施工中不需要大型机械,且无打入桩的噪声、振动和挤压周围土体带来的危害,成本较地下连续墙低。同时,灌注桩围护结构在建筑主体结构外墙设计时也可视为外墙中的一部分参与受力,这时在桩与主体之间通常不设拉结筋,并用防水层隔开。一般当基坑深8-14m时,周围环境要求不十分严格时,多考虑采用排桩支护。柱列式灌注桩的工作比较可靠,但要重视帽梁的整体拉结作用,在基坑边角处,帽梁应连续交圈。当要求灌注桩围护结构起到抗水防渗作用时,必须做好桩间和桩背的深层防水搅拌桩或旋喷桩。当周围环境保护要求严格时,为减少排桩的变形,在软土地区有时对基坑底沿灌注桩周边或部分区域,用水泥搅拌桩或注浆进行被动区加固,以提高被动区的抗力,减少支护结构的变形。
2.4地下连续墙支护技术:地下连续墙具有整体刚度大的特点和良好的止水防渗效果,适用于地下水位以下的软粘土和砂土等多种地层条件和复杂的施工环境,尤其是基坑底面以下有深层软土,需将墙体插入很深的情况,因此在国内外的地下工程中得到广泛的应用。并且随着技术的发展和施工方法及机械的改进,地下连续墙发展到既是基坑施工时的挡土围护结构,又是拟建主体结构的侧墙,如支撑得当,且配合正确的施工方法和措施,可较好地控制软土地层的变形。在基坑深、周围环境保护要求高的工程中,经技术经济比较后多采用此技术。但地下连续墙在坚硬土体中开挖成槽会有较大困难,尤其是遇到岩层需要特殊的成槽机具,施工费用较高。在施工中泥浆污染施工现场,造成场地泥泞不堪。目前采用的逆作法施工使得两墙合一,即施工时用作围护结构,又是地下结构的外墙。除现场浇筑的地下连续墙外,我国还进行了预制装配式地下连续墙和预应力地下连续墙的研究和试用。预制装配式地下连续墙墙面光滑,由于配筋合理可使墙厚减薄并加快施工速度。而预应力地下连续墙则可提高围护墙的刚度达30%以上,可减薄墙厚,减少内支撑数量,由于曲线布筋张拉后产生反拱作用,可减少围护结构变形,消除裂缝,从而提高抗渗性。这两种方法己经在工程中试用,并取得较好的社会效益和经济效益。
2.5土钉墙支护技术:土钉墙支护是用于土体开挖和边坡稳定的一种新的挡土技术,经济、可靠且施工简便,己在我国得到迅速推广。土钉是用来加固现场原位土体的细长杆件。通常采用钻孔,放入变形钢筋并沿孔全长注浆的方法做成、它依靠与土体之间的粘结力或摩擦力,在土体发生变形时被动承受拉力作用。它由密集的土钉群、被加固的土体、喷射混凝土面层形成支护体系。土钉支护的使用要求土体具有临时自稳能力,以便给出一定时间施工土钉墙,因此对土钉墙适用的地质条件应加以限制。《建筑基坑支护技术规程(JGJ1202一99)》12》规定了土钉墙适用于二、三级基坑、非软土场地、基坑深度不宜大于12m。土钉墙支护施工速度快、用料省、造价低,与其他桩墙支护相比,工期可缩短50%以上,节约造价60%左右;而且土钉支护可以紧贴已有建筑物施工,从而省出桩体或墙体所占用的地面。但从许多工程经验看,土钉墙的破坏几乎均是由于水的作用,水使土钉墙产生软化,引起整体或局部破坏,因此规定采用土钉墙工程必须做好降水,且其不宜作为挡水结构。
3.撑支护系统。
3.1锚杆(索)支护技术:锚杆(索)支护技术是在孔内放入钢筋或钢索后注浆,达到强度后与支撑结构进行拉锚,并加预应力锚固后共同受力,适用于高边坡及受载大的场所。
3.2混凝土和钢结构支撑支护技术:依据设计计算在不同开挖位置上灌注混凝土内支撑体系和安装钢结构内支撑体系,与灌注桩或连续墙形成一个框架支护体系,承受侧向土压力,内支撑体系在做结构时要拆除。适用于高层建筑物密集区和软弱淤泥地层。
一、近年来随着基坑深度和体量增大,支护技术也有了较大进展,按功能分常用的有
1.挡土系统:用的有钢板桩、钢筋混凝土板桩、深层水泥搅拌桩、钻孔灌注桩、地下连续墙等。其功能是形成支护排桩或支护挡土墙阻挡坑外土压力。
2.挡水系统:常用的有深层水泥搅拌桩、旋喷桩、压密注浆、地下连续墙、锁口钢板桩等。其功能是阻挡坑外渗水。
3.支撑系统:常用的有钢管与型钢内支撑、钢筋混凝土内支撑、钢与钢筋混凝土组合支撑。其功能是支承围护结构侧力与限制围护结构位移。
二、常见的深基坑支护的类型及其分析
1.直接开挖或放坡开挖。适用于地面开阔和地下地质条件较好的情况。基坑应自上而下分层、分段依次开挖,随挖随刷边坡,必要时采用水泥粘土护坡,其缺点是对周围环境的影响较大。
2.挡土、挡水支护系统。
2.1型钢支护技术:一般使用单排工字钢或钢板桩,基坑较深时可采用双排桩,由拉杆或连梁连结共同受力,也可采用多层钢横撑支护或單层、多层锚杆与型钢共同形成支护结构。钢板桩由带锁口或钳口的热轧型钢制成,目前钢板桩常用的截面形式有U形、Z形和直腹板型。钢板桩由于施工简单而应用较广。但是型钢和钢板桩的施工可能会引起相邻地基的变形和产生噪声振动,对周围环境影响很大,因此在人口密集、建筑密度大的地区,其使用受到限制。且钢板桩本身柔性较大,如支撑或锚拉系统设置不当变形会很大,所以当基坑支护深度大于7m时,不宜采用。同时由于钢板桩在地下室施工结束后需拔出,因此应考虑拔出时对周围地基土和地表土的影响。
2.2深层搅拌支护技术:深层搅拌支护是利用水泥作为固化剂,采用机械搅拌,将固化剂和软土剂强制拌和,使固化剂和软土剂之间产生一系列物理化学反应而逐步硬化,形成具有整体性、水稳定性和一定强度的水泥土桩墙,作为支护结构。适用于淤泥、淤泥质土、粘土、粉质粘土、粉土、素填土等土层,基坑开挖深度不宜大于6m。对有机质土、泥炭质土,宜通过试验确定。
2.3混凝土灌注排桩支护技术:排桩支护是指柱列式间隔布置钢筋混凝土挖孔、钻孔灌注桩作为主要挡土结构的一种支护形式。柱列式间隔布置包括桩与桩之间有一定净距的疏排布置形式和桩与桩相切的密排布置形式。柱列式灌注桩作为挡土围护结构有很好的刚度,但各桩间的联系必须在桩顶浇注较大截面的钢筋混凝土帽梁加以可靠联接。为防止地下水并夹带土体颗粒从桩间孔隙流入坑内,应同时在桩间或桩背采用高压注浆,设置深层搅拌桩、旋喷桩等措施,或在桩后专门构筑防水帷幕。灌注桩施工简便,可用机械钻(冲)孔或人工挖孔,施工中不需要大型机械,且无打入桩的噪声、振动和挤压周围土体带来的危害,成本较地下连续墙低。同时,灌注桩围护结构在建筑主体结构外墙设计时也可视为外墙中的一部分参与受力,这时在桩与主体之间通常不设拉结筋,并用防水层隔开。一般当基坑深8-14m时,周围环境要求不十分严格时,多考虑采用排桩支护。柱列式灌注桩的工作比较可靠,但要重视帽梁的整体拉结作用,在基坑边角处,帽梁应连续交圈。当要求灌注桩围护结构起到抗水防渗作用时,必须做好桩间和桩背的深层防水搅拌桩或旋喷桩。当周围环境保护要求严格时,为减少排桩的变形,在软土地区有时对基坑底沿灌注桩周边或部分区域,用水泥搅拌桩或注浆进行被动区加固,以提高被动区的抗力,减少支护结构的变形。
2.4地下连续墙支护技术:地下连续墙具有整体刚度大的特点和良好的止水防渗效果,适用于地下水位以下的软粘土和砂土等多种地层条件和复杂的施工环境,尤其是基坑底面以下有深层软土,需将墙体插入很深的情况,因此在国内外的地下工程中得到广泛的应用。并且随着技术的发展和施工方法及机械的改进,地下连续墙发展到既是基坑施工时的挡土围护结构,又是拟建主体结构的侧墙,如支撑得当,且配合正确的施工方法和措施,可较好地控制软土地层的变形。在基坑深、周围环境保护要求高的工程中,经技术经济比较后多采用此技术。但地下连续墙在坚硬土体中开挖成槽会有较大困难,尤其是遇到岩层需要特殊的成槽机具,施工费用较高。在施工中泥浆污染施工现场,造成场地泥泞不堪。目前采用的逆作法施工使得两墙合一,即施工时用作围护结构,又是地下结构的外墙。除现场浇筑的地下连续墙外,我国还进行了预制装配式地下连续墙和预应力地下连续墙的研究和试用。预制装配式地下连续墙墙面光滑,由于配筋合理可使墙厚减薄并加快施工速度。而预应力地下连续墙则可提高围护墙的刚度达30%以上,可减薄墙厚,减少内支撑数量,由于曲线布筋张拉后产生反拱作用,可减少围护结构变形,消除裂缝,从而提高抗渗性。这两种方法己经在工程中试用,并取得较好的社会效益和经济效益。
2.5土钉墙支护技术:土钉墙支护是用于土体开挖和边坡稳定的一种新的挡土技术,经济、可靠且施工简便,己在我国得到迅速推广。土钉是用来加固现场原位土体的细长杆件。通常采用钻孔,放入变形钢筋并沿孔全长注浆的方法做成、它依靠与土体之间的粘结力或摩擦力,在土体发生变形时被动承受拉力作用。它由密集的土钉群、被加固的土体、喷射混凝土面层形成支护体系。土钉支护的使用要求土体具有临时自稳能力,以便给出一定时间施工土钉墙,因此对土钉墙适用的地质条件应加以限制。《建筑基坑支护技术规程(JGJ1202一99)》12》规定了土钉墙适用于二、三级基坑、非软土场地、基坑深度不宜大于12m。土钉墙支护施工速度快、用料省、造价低,与其他桩墙支护相比,工期可缩短50%以上,节约造价60%左右;而且土钉支护可以紧贴已有建筑物施工,从而省出桩体或墙体所占用的地面。但从许多工程经验看,土钉墙的破坏几乎均是由于水的作用,水使土钉墙产生软化,引起整体或局部破坏,因此规定采用土钉墙工程必须做好降水,且其不宜作为挡水结构。
3.撑支护系统。
3.1锚杆(索)支护技术:锚杆(索)支护技术是在孔内放入钢筋或钢索后注浆,达到强度后与支撑结构进行拉锚,并加预应力锚固后共同受力,适用于高边坡及受载大的场所。
3.2混凝土和钢结构支撑支护技术:依据设计计算在不同开挖位置上灌注混凝土内支撑体系和安装钢结构内支撑体系,与灌注桩或连续墙形成一个框架支护体系,承受侧向土压力,内支撑体系在做结构时要拆除。适用于高层建筑物密集区和软弱淤泥地层。