论文部分内容阅读
关系抽取作为提取信息的有效技术之一,一直是机器学习中的一个重要任务。已有方法主要依赖大量的人工制作特征,近年来,随着深度神经网络的广泛应用,为关系抽取提供了一种新视角。围绕关系抽取任务,本文展开基于卷积神经网络(CNN)的关系抽取研究,在一个公开数据集上进行了系列CNN的实验对比,发现CR-CNN模型的性能最好,取得了84.1%的F1值。