论文部分内容阅读
提出了一种多物体环境下基于改进YOLOv2的无标定3D机械臂自主抓取方法。首先为了降低深度学习算法YOLOv2检测多物体边界框重合率和3D距离计算误差,提出了一种改进的YOLOv2算法。利用此算法对图像中的目标物体进行检测识别,得到目标物体在RGB图像中的位置信息;然后根据深度图像信息使用K-means++聚类算法快速计算目标物体到摄像机的距离,估计目标物体大小和姿态,同时检测机械手的位置信息,计算机械手到目标物体的距离;最后根据目标物体的大小、姿态和到机械手的距离,使用PID算法控制机械手抓取物体