论文部分内容阅读
为了及时有效地对建筑物的变形进行预测,在对多小波、Kalman滤波与神经网络这三种变形预测和建模的有力工具研究的基础上,将多小波分析、神经网络强有力的逼近能力以及Kalman滤波的迭代计算和最优估计的优点有机地结合起来,建立了一种新的变形预测方法:基于扩展Kalman滤波(简称为EKF)的多小波神经网络变形预测模型;通过变形预测实验表明该方法具有较高的精度,较快的速度,是一种能快速高效精确预测变形体变形的方法。