论文部分内容阅读
摘 要:在当前教育改革的形势下,数学教师应该改变陈旧的小学数学教育模式,改变小学生的学习方法,在数学教育当中引入新的方法,提升学生的课堂兴趣,培养学生的数学思维,以此来提高小学数学的教学效率。同时,基于小学数学是儿童“街头数学”的延伸,是贴近生活服务于生活的一门学科这一理念,新课标当中引入了建模教学这一理念,近年来建模教学的思想越来越深入到小学数学课堂当中。
关键词:小学数学;建模教学;课堂教学;现实教学
在数学教学当中流传着这样一句话,要让小学生亲自体验将现实当中遇到的一系列问题,通过提炼总结成数学问题并解决问题这样一种过程,让学生在思考能力、总结能力和解决问题的能力得到锻炼和发展,从而使小学生对数学得到充分的理解。这就是要求小学生不能为了学习而学习,学习的目的是解决问题,而通过在现实遇到的问题当中总结出数学问题,其实就是一种建模思想。小学数学教师一定要充分理解建模思想的概念,正确利用建模思想进行数学教学,在建模教学的时候要站在小学生的认知立场上来建立模型。
一、明确建模教学概念,推广建模教学理论。
数学本来就是对现实遇到问题的一种总结,是对现实无数类似问题的归纳,各种数学公式,数学理论都是由现实问题抽象而来的,甚至也可以说现实当中遇到的很多问题都是数学的一种模型。数学本就来自于现实,因此,在数学教学当中,把现实的例子作为数学模型进行教学也是可以的,现实问题就是数学的具体例子。小学生由于年龄较小对于数学公式,定理这种抽象的东西理解起来比较困难,因此在教学当中需要引入发生在小学生周边的具体问题,这种问题或者例子就是一种建模,然后在通过数学理论去解决这种问题,这就是通过建模的方法去教数学。在这种建模教学当中学生可以更加理解用到的数学定理和数学公式,也能够充分的感受到数学与现实生活的联系,感受到数学的价值,从而对数学学习产生兴趣。例如青岛版三年级上册“我当小厨师---分数的初步认识”,很多小学生不理解分数的意思,也不理解分数的用途,就是感觉分数很多余,这就导致了很多学生学不会分数,也不知道分数使用的场合。小学教师在讲解本章的时候,就可以利用建模思想,将抽象的分数转化成现实的例子,在上课的时候教师可以准备一瓶矿泉水和四个纸杯,教师将矿泉瓶的水平均倒入四个纸杯当中,让学生去计算每个纸杯的水,同时引出纸杯里面的水和矿泉瓶里水的比例,让学生知道一纸杯水等于四分之一矿泉瓶水,进而引出分数的概念和分数的大小,再继续让学生自己建立其他数学模型,更加充分的认识分数的性质和特征。数学教师在教学当中要多加利用建模教学,通过这种建模教学让学生理解抽象的数学理论和数学概念,同时也要鼓励学生利用建模理论去解决数学问题,让学生自己学会用建模的理论解释数学公式和数学定理。
二、重视课堂建模教学,掌握建模的方法策略。
(1)模型挑选方面要以教学为目的,以具体案例为原型。建模教学说到底还是为教学服务的,是一种有效的教学手段。教师建立数学模型要对教学任务,教学课程有充足的了解,在模型挑选方面要切合教学目标,不能脱离教学实际,不能为了模型而教学。同时还要从小学生学习生活环境出发,模型要以小学生身边发生的故事为原型,不能脱离小学生的认知,只有这样才能激发小学生的学习乐趣,达成教学目标。例如青岛版“美化校园---圆的周长”教学当中,利用多媒体向学生展示了短跑运动员的比赛情境,学生通过观察发现运动员的起跑线不相同,内圈的运动员在弯道的时候容易超过外圈运动员,教师对这些问题进行了总结:短跑道由直道和弯道组成,起跑点不同,但是终点相同,通过分析让小學生明白内跑道在弯道的时候比外跑道短。通过这种建模的选择让学生理解教材当中的知识点,激发学生思考,同时理解“相邻起跑线的距离差=直径差×π”,也就是说观看短跑运动员比赛和总结短跑跑道规则,都是为上面那个数学公式做铺垫,都是为了让学生能够更好的理解那个公式。
(2)教师要掌握建模本质,设计合理预测。在模型转化的时候要根据模型的相关特征和实际情况进行全面的对比、概括、分析,采取精确的语言对相关问题提出符合题意的转化,这是模型建立的关键,同时还有根据教学需求,对问题的主次进行区分,满足主要问题即可,从而为建模提供正确的方向。
(3)在模型构造方面要选择合适的解决策略,根据实际情况构造模型。在对数学问题建立模型之后,还需要合适的方法去解决数学问题。因此,教师建立模型的时候要站在学生的认知角度,让学生能够理解这一模型和数学问题的关系。例如,青岛版《多边形的面积》一章当中,学生在计算多边形面积的时候,可以把多边形转化成校园不规则的草坪形状。上底为20m,下底为35m,高为25m的梯形面积,减去一个边长为10m的正方形面积为多少?这一问题就可以转化成某学校有一个梯形草坪,需要在梯形草坪当中建一个边长为10m的正方形储水池,则剩下草坪面积为多少?在这种实际案例的运用当中让学生掌握模型的构造。
三、重视建模教学,培养学生解决问题的能力。
之所以说数学是与现实联系最为紧密的学科,其中的一个原因就是数学的建模理论教学。数学建模将数学理论和现实问题连接在了一起,每一个数学公式和数学知识,都能在现实当中找到运用的例子,这就说明了数学不是纯理论学科,这也就要求小学生在学习数学的时候,要联系实际,要能够解决身边发生的一些简单的数学问题。这种建模教学,既能够让小学生掌握数学知识,同时也能够解决简单的数学问题,最后还能提升小学生学习数学的兴趣,是一个良性循环。比如,五一期间小明和他的父母,外祖父母一起去旅游,由于人较多,一辆车撑不下,因此,他们开了两辆车,小明和他的母亲开车先走了,他的父亲晚走了半个小时,他们家距离目的地一共300公里,小明母亲的时速为40公里,小明父亲的时速为60公里,小明母亲问小明,父亲能在达到目的地之前追上小明吗?这就是一个很现实的模型,只有一组简单的对话,没有体现数学知识,这就需要小明利用所学的知识进行解答。如果教师在教学当中利用过类似的模型,那么小明很快就能得出答案,如果没有类似的建模,那么就需要小明将这一现实的问题,抽象成数学问题,然后利用数学知识去解答。小明到达目的用了300÷40=7.5小时,小明父亲用了300÷60=5小时,由于小明父亲晚出发了半小时,所以可以理解为一共用了5.5个小时,因此,小明父亲将在小明达到目的地前两个小时追上他。通过这种的现实问题的解决,能够提高小学生的学习兴趣。
综上所述:小学数学建模教学是一种行之有效的教学方法,数学教师一定要合理利用建模教学,提升教学效率,提升小学生的数学成绩。具体表现在:要明确建模教学的概念,在教学当中大力推广,使学生能够轻松学会小学数学;教师要重视课堂建模教学方法,合理贯穿建模案例,掌握建模的正确方法,让学生能够将数学知识理论和数学模型集合起来,从而提升学生学习数学的兴趣;再次还要结合实际情况,培养学生的建模思想,要让学生在数学学习当中习惯建立模型,通过建模更加深入的理解数学知识;最后,要培养学生利用建模思维,通过所学到的数学知识解决现实问题的能力,数学成绩好不代表数学学会了,能够解决现实的问题才能真正的发挥小学数学的价值。因此,教师和小学生都应该重视并学会建模教学理论。
参考文献:
[1]亓奎章.试析如何开展好小学数学建模教学[J].中国校外教育,2019(07):105.
[2]张晓昕.小学数学课堂建模教学方式再探——以青岛版三年级下册《分数的初步认识(二)》为例[J].科学大众(科学教育),2019(01):81.
[3]王倩瑜.“学在教之前,教在关键处”——浅议研学后教模式下的小学数学建模教学策略[J].课程教育研究,2019(01):127.
关键词:小学数学;建模教学;课堂教学;现实教学
在数学教学当中流传着这样一句话,要让小学生亲自体验将现实当中遇到的一系列问题,通过提炼总结成数学问题并解决问题这样一种过程,让学生在思考能力、总结能力和解决问题的能力得到锻炼和发展,从而使小学生对数学得到充分的理解。这就是要求小学生不能为了学习而学习,学习的目的是解决问题,而通过在现实遇到的问题当中总结出数学问题,其实就是一种建模思想。小学数学教师一定要充分理解建模思想的概念,正确利用建模思想进行数学教学,在建模教学的时候要站在小学生的认知立场上来建立模型。
一、明确建模教学概念,推广建模教学理论。
数学本来就是对现实遇到问题的一种总结,是对现实无数类似问题的归纳,各种数学公式,数学理论都是由现实问题抽象而来的,甚至也可以说现实当中遇到的很多问题都是数学的一种模型。数学本就来自于现实,因此,在数学教学当中,把现实的例子作为数学模型进行教学也是可以的,现实问题就是数学的具体例子。小学生由于年龄较小对于数学公式,定理这种抽象的东西理解起来比较困难,因此在教学当中需要引入发生在小学生周边的具体问题,这种问题或者例子就是一种建模,然后在通过数学理论去解决这种问题,这就是通过建模的方法去教数学。在这种建模教学当中学生可以更加理解用到的数学定理和数学公式,也能够充分的感受到数学与现实生活的联系,感受到数学的价值,从而对数学学习产生兴趣。例如青岛版三年级上册“我当小厨师---分数的初步认识”,很多小学生不理解分数的意思,也不理解分数的用途,就是感觉分数很多余,这就导致了很多学生学不会分数,也不知道分数使用的场合。小学教师在讲解本章的时候,就可以利用建模思想,将抽象的分数转化成现实的例子,在上课的时候教师可以准备一瓶矿泉水和四个纸杯,教师将矿泉瓶的水平均倒入四个纸杯当中,让学生去计算每个纸杯的水,同时引出纸杯里面的水和矿泉瓶里水的比例,让学生知道一纸杯水等于四分之一矿泉瓶水,进而引出分数的概念和分数的大小,再继续让学生自己建立其他数学模型,更加充分的认识分数的性质和特征。数学教师在教学当中要多加利用建模教学,通过这种建模教学让学生理解抽象的数学理论和数学概念,同时也要鼓励学生利用建模理论去解决数学问题,让学生自己学会用建模的理论解释数学公式和数学定理。
二、重视课堂建模教学,掌握建模的方法策略。
(1)模型挑选方面要以教学为目的,以具体案例为原型。建模教学说到底还是为教学服务的,是一种有效的教学手段。教师建立数学模型要对教学任务,教学课程有充足的了解,在模型挑选方面要切合教学目标,不能脱离教学实际,不能为了模型而教学。同时还要从小学生学习生活环境出发,模型要以小学生身边发生的故事为原型,不能脱离小学生的认知,只有这样才能激发小学生的学习乐趣,达成教学目标。例如青岛版“美化校园---圆的周长”教学当中,利用多媒体向学生展示了短跑运动员的比赛情境,学生通过观察发现运动员的起跑线不相同,内圈的运动员在弯道的时候容易超过外圈运动员,教师对这些问题进行了总结:短跑道由直道和弯道组成,起跑点不同,但是终点相同,通过分析让小學生明白内跑道在弯道的时候比外跑道短。通过这种建模的选择让学生理解教材当中的知识点,激发学生思考,同时理解“相邻起跑线的距离差=直径差×π”,也就是说观看短跑运动员比赛和总结短跑跑道规则,都是为上面那个数学公式做铺垫,都是为了让学生能够更好的理解那个公式。
(2)教师要掌握建模本质,设计合理预测。在模型转化的时候要根据模型的相关特征和实际情况进行全面的对比、概括、分析,采取精确的语言对相关问题提出符合题意的转化,这是模型建立的关键,同时还有根据教学需求,对问题的主次进行区分,满足主要问题即可,从而为建模提供正确的方向。
(3)在模型构造方面要选择合适的解决策略,根据实际情况构造模型。在对数学问题建立模型之后,还需要合适的方法去解决数学问题。因此,教师建立模型的时候要站在学生的认知角度,让学生能够理解这一模型和数学问题的关系。例如,青岛版《多边形的面积》一章当中,学生在计算多边形面积的时候,可以把多边形转化成校园不规则的草坪形状。上底为20m,下底为35m,高为25m的梯形面积,减去一个边长为10m的正方形面积为多少?这一问题就可以转化成某学校有一个梯形草坪,需要在梯形草坪当中建一个边长为10m的正方形储水池,则剩下草坪面积为多少?在这种实际案例的运用当中让学生掌握模型的构造。
三、重视建模教学,培养学生解决问题的能力。
之所以说数学是与现实联系最为紧密的学科,其中的一个原因就是数学的建模理论教学。数学建模将数学理论和现实问题连接在了一起,每一个数学公式和数学知识,都能在现实当中找到运用的例子,这就说明了数学不是纯理论学科,这也就要求小学生在学习数学的时候,要联系实际,要能够解决身边发生的一些简单的数学问题。这种建模教学,既能够让小学生掌握数学知识,同时也能够解决简单的数学问题,最后还能提升小学生学习数学的兴趣,是一个良性循环。比如,五一期间小明和他的父母,外祖父母一起去旅游,由于人较多,一辆车撑不下,因此,他们开了两辆车,小明和他的母亲开车先走了,他的父亲晚走了半个小时,他们家距离目的地一共300公里,小明母亲的时速为40公里,小明父亲的时速为60公里,小明母亲问小明,父亲能在达到目的地之前追上小明吗?这就是一个很现实的模型,只有一组简单的对话,没有体现数学知识,这就需要小明利用所学的知识进行解答。如果教师在教学当中利用过类似的模型,那么小明很快就能得出答案,如果没有类似的建模,那么就需要小明将这一现实的问题,抽象成数学问题,然后利用数学知识去解答。小明到达目的用了300÷40=7.5小时,小明父亲用了300÷60=5小时,由于小明父亲晚出发了半小时,所以可以理解为一共用了5.5个小时,因此,小明父亲将在小明达到目的地前两个小时追上他。通过这种的现实问题的解决,能够提高小学生的学习兴趣。
综上所述:小学数学建模教学是一种行之有效的教学方法,数学教师一定要合理利用建模教学,提升教学效率,提升小学生的数学成绩。具体表现在:要明确建模教学的概念,在教学当中大力推广,使学生能够轻松学会小学数学;教师要重视课堂建模教学方法,合理贯穿建模案例,掌握建模的正确方法,让学生能够将数学知识理论和数学模型集合起来,从而提升学生学习数学的兴趣;再次还要结合实际情况,培养学生的建模思想,要让学生在数学学习当中习惯建立模型,通过建模更加深入的理解数学知识;最后,要培养学生利用建模思维,通过所学到的数学知识解决现实问题的能力,数学成绩好不代表数学学会了,能够解决现实的问题才能真正的发挥小学数学的价值。因此,教师和小学生都应该重视并学会建模教学理论。
参考文献:
[1]亓奎章.试析如何开展好小学数学建模教学[J].中国校外教育,2019(07):105.
[2]张晓昕.小学数学课堂建模教学方式再探——以青岛版三年级下册《分数的初步认识(二)》为例[J].科学大众(科学教育),2019(01):81.
[3]王倩瑜.“学在教之前,教在关键处”——浅议研学后教模式下的小学数学建模教学策略[J].课程教育研究,2019(01):127.