论文部分内容阅读
百分数在日常生活和生产建设中有着广泛的应用,也是小学数学的一个重要内容。如何改进并加强百分数应用题教学,使学生牢固掌握分析方法,提高熟练程度和应用能力,从而激发学生学习的兴趣,增强学生的学习目的性和实践性,真正提高教学质量,这是我一直在思考的问题。
一、熟练典型题型
百分数应用题的题型可以有很多变化,但是有一些典型的题型会反复出现。因此,教师帮助学生了解一些典型题目的特点,概括出常用的分析方法和解题策略是很有必要的。
百分数应用题主要分为两大类型:
1.求百分之几。
常见的有求百分率、求一个数量是(占)另一个数量的百分之几、求一个数量比另一个数量多(或少)百分之几等题型。求百分率都是用已知量除以总数量再化成百分数。求一个数量是另一个数量的百分之几(另一个数量是标准比较量,即单位“1”),都是用前面的数量除以后面的数量(单位“1”)。求一个数量比另一个数量多(或少)百分之几总是要用多(或少)的那部分数量除以单位“1”。但多(或少)的那部分数量有时在题中没有告诉,有时直接告诉,因此就要提醒学生注意区别。如:
①男生有25人,女生有20人,男生比女生多百分之几?
②女生有20人,男生比女生多5人,男生比女生多百分之几?
前者要先求出相差的数量,再除以单位“1”;后者相差的数量已经告诉,可以直接用它除以单位“1”。
2.已知百分之几,求具体的数量。
这一类题型的变化较多,数量关系也稍复杂一些,但也可找到一些具有一定代表性的题型。如:求一个数量的百分之几是多少?已知一个数量的百分之几是多少,求这个数量。求一个数量增加(或减少)它的百分之几是多少?已知一个数量增加(或减少)它的百分之几是多少,求这个数量,等等。第一种情况可以直接用乘法(即用单位“1”乘以百分数);第二种情况一般可以用方程或除法解决;第三种情况可以先求出单位“1”的百分之几是多少(即增加或减少的数量),再用单位“1”加上(或减去)这部分数量;第四种情况往往用方程解决(设单位“1”为X),方程的数量关系类似第三种情况。
二、分析数量关系
学生解决百分数应用题的关键在于理解百分数在具体题目中的含义,能够独立、熟练地分析数量关系,根据数量关系灵活选择合适的方法解决问题。我认为可以分为以下几个层次进行:
1.确定单位“1”。
找准题目中的单位“1”是解决百分数应用题的首要条件。单位“1”指的是比较的标准量,凡是题中出现的百分数都是单位“1”的百分之几而不是其他任何一个数量的百分之几。为了避免学生生搬硬套,教师要让学生确定题目中的百分数具体指的是哪个数量的百分之几。
2.确定解题法。
解决百分数应用题通常有两种方法:(1)列算式解答;(2)列方程解答。具体选用哪一种方法要根据题目的特点来确定。学生比较适应顺推的思路,对于“单位‘1’的数量×百分数=……”这样的数量关系容易理解,通常题目中单位“1”的数量如果知道,那么一般采用算式方法解答;如果单位“1”的具体数量不知道,一般就设单位“1”的量为x。
3.确定对应量。
要分析数量关系,学生首先要把各部分具体数量和它们所表示的百分数互相对应起来。这里有两种情况必须明确:
(1)条件中的已知量所对应的百分数是什么?如:
修一条公路,已经修了它的40%,还剩60千米,这条公路一共有多少千米?
题中的已知量是60千米,是还剩的千米数,40%是已经修的千米数占总路程的40%,那么60千米应该占总路程的60%,所以60千米对应的百分数应该是60%。
(2)单位“1”的百分之几表示的具体数量是什么?如:
柳树有200棵,杨树比柳树多25%,杨树有多少棵?
经过分析可以知道,这道题的单位“1”是柳树的棵数,柳树棵数的25%所表示的具体数量应该是杨树比柳树多的棵数(即柳树棵数×25%=杨树比柳树多的棵数)。
4.确定关系式。
这是分析数量关系的最后一步,在做好了前面的一系列分析工作之后,学生可以进一步分析题目中存在的数量关系,根据题目所求的问题综合考虑,选择列出恰当的数量关系式解决问题。
三、强化实际应用
教学百分数应用题的主要目的是要让学生将所学的有关百分数的知识应用于实际生活中,提高其灵活应用和独立分析的能力,真正实现“数学知识来源于生活又应用于生活”。
1.学习内容生活化。
《国家数学课程标准》指出:“数学教学应该是从学生的生活经验和已有的知识背景出发,向他们提供充分的进行数学活动和交流的机会。”有关学校兴趣组的问题、班(年)级人数的问题、商店打折的问题等,在学生生活中司空见惯,所以往往能吸引他们的注意,提高学习积极性,激发探索意识,有利于发展他们的灵活应用能力,又能使他们获得成功的体验。
2.教学形式开放化。
为了提高其独立分析解决实际问题的能力,练习的形式可以采用多种变化。如教师可让学生根据给出的算式和数量关系,合理选择所要填写的条件。
学校美术组有20人,___________,科技组有多少人?
科技组的人数是美术组的80 ×80%
科技组的人数比美术组多80 20×80%
是科技组的80
一、熟练典型题型
百分数应用题的题型可以有很多变化,但是有一些典型的题型会反复出现。因此,教师帮助学生了解一些典型题目的特点,概括出常用的分析方法和解题策略是很有必要的。
百分数应用题主要分为两大类型:
1.求百分之几。
常见的有求百分率、求一个数量是(占)另一个数量的百分之几、求一个数量比另一个数量多(或少)百分之几等题型。求百分率都是用已知量除以总数量再化成百分数。求一个数量是另一个数量的百分之几(另一个数量是标准比较量,即单位“1”),都是用前面的数量除以后面的数量(单位“1”)。求一个数量比另一个数量多(或少)百分之几总是要用多(或少)的那部分数量除以单位“1”。但多(或少)的那部分数量有时在题中没有告诉,有时直接告诉,因此就要提醒学生注意区别。如:
①男生有25人,女生有20人,男生比女生多百分之几?
②女生有20人,男生比女生多5人,男生比女生多百分之几?
前者要先求出相差的数量,再除以单位“1”;后者相差的数量已经告诉,可以直接用它除以单位“1”。
2.已知百分之几,求具体的数量。
这一类题型的变化较多,数量关系也稍复杂一些,但也可找到一些具有一定代表性的题型。如:求一个数量的百分之几是多少?已知一个数量的百分之几是多少,求这个数量。求一个数量增加(或减少)它的百分之几是多少?已知一个数量增加(或减少)它的百分之几是多少,求这个数量,等等。第一种情况可以直接用乘法(即用单位“1”乘以百分数);第二种情况一般可以用方程或除法解决;第三种情况可以先求出单位“1”的百分之几是多少(即增加或减少的数量),再用单位“1”加上(或减去)这部分数量;第四种情况往往用方程解决(设单位“1”为X),方程的数量关系类似第三种情况。
二、分析数量关系
学生解决百分数应用题的关键在于理解百分数在具体题目中的含义,能够独立、熟练地分析数量关系,根据数量关系灵活选择合适的方法解决问题。我认为可以分为以下几个层次进行:
1.确定单位“1”。
找准题目中的单位“1”是解决百分数应用题的首要条件。单位“1”指的是比较的标准量,凡是题中出现的百分数都是单位“1”的百分之几而不是其他任何一个数量的百分之几。为了避免学生生搬硬套,教师要让学生确定题目中的百分数具体指的是哪个数量的百分之几。
2.确定解题法。
解决百分数应用题通常有两种方法:(1)列算式解答;(2)列方程解答。具体选用哪一种方法要根据题目的特点来确定。学生比较适应顺推的思路,对于“单位‘1’的数量×百分数=……”这样的数量关系容易理解,通常题目中单位“1”的数量如果知道,那么一般采用算式方法解答;如果单位“1”的具体数量不知道,一般就设单位“1”的量为x。
3.确定对应量。
要分析数量关系,学生首先要把各部分具体数量和它们所表示的百分数互相对应起来。这里有两种情况必须明确:
(1)条件中的已知量所对应的百分数是什么?如:
修一条公路,已经修了它的40%,还剩60千米,这条公路一共有多少千米?
题中的已知量是60千米,是还剩的千米数,40%是已经修的千米数占总路程的40%,那么60千米应该占总路程的60%,所以60千米对应的百分数应该是60%。
(2)单位“1”的百分之几表示的具体数量是什么?如:
柳树有200棵,杨树比柳树多25%,杨树有多少棵?
经过分析可以知道,这道题的单位“1”是柳树的棵数,柳树棵数的25%所表示的具体数量应该是杨树比柳树多的棵数(即柳树棵数×25%=杨树比柳树多的棵数)。
4.确定关系式。
这是分析数量关系的最后一步,在做好了前面的一系列分析工作之后,学生可以进一步分析题目中存在的数量关系,根据题目所求的问题综合考虑,选择列出恰当的数量关系式解决问题。
三、强化实际应用
教学百分数应用题的主要目的是要让学生将所学的有关百分数的知识应用于实际生活中,提高其灵活应用和独立分析的能力,真正实现“数学知识来源于生活又应用于生活”。
1.学习内容生活化。
《国家数学课程标准》指出:“数学教学应该是从学生的生活经验和已有的知识背景出发,向他们提供充分的进行数学活动和交流的机会。”有关学校兴趣组的问题、班(年)级人数的问题、商店打折的问题等,在学生生活中司空见惯,所以往往能吸引他们的注意,提高学习积极性,激发探索意识,有利于发展他们的灵活应用能力,又能使他们获得成功的体验。
2.教学形式开放化。
为了提高其独立分析解决实际问题的能力,练习的形式可以采用多种变化。如教师可让学生根据给出的算式和数量关系,合理选择所要填写的条件。
学校美术组有20人,___________,科技组有多少人?
科技组的人数是美术组的80 ×80%
科技组的人数比美术组多80 20×80%
是科技组的80