论文部分内容阅读
【摘要】数学核心素养是以数学课程教学为载体,基于数学学科的知识技能而形成的重要的思维品质和关键能力。作为教师要以课堂教学中的核心问题为切入口,提升学生的数学核心素养。
【关键词】数学教学 核心素养
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2017)15-0160-01
数学核心素养是以数学课程教学为载体,基于数学学科的知识技能而形成的重要的思维品质和关键能力。6大数学核心素养,即数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。数学核心素养反映了数学的基本思想和学习数学的关键能力。数学抽象、逻辑推理、数学建模反映的是数学基本思想,是核心素养中最重要的数学思维品质。直观想象、数学运算、数据分析,可以理解为学习数学的关键能力和方法。作为教师要以课堂教学中的核心问题为切入口,提升学生的数学核心素养。
一、以导学性问题,促数学核心素养
在课前,可以提出一些核心的导学性问题,便于学生在自学的过程中把握数学概念的核心本质,从而提升学生的数学核心素养。如,苏教版四年级下册的《三角形的分类》,教材中引导学生根据角的特点对三角形进行分类:锐角三角形、直角三角形、钝角三角形。根据边的特点对三角形进行分类:一般三角形、等腰三角形、等边三角形。在课前可以设计研究学习的导学单,提出三个问题:1.如果将三角形按角进行分类,可以怎样分类?你能用图表示吗?2.为什么说“三个角都是锐角的三角形是锐角三角形”,而直角三角形却说“有一个角是直角”,钝角三角形说“有一个角是钝角”?3.如果将三角形按边进行分类,可以怎样分类?你能用图表示吗?学生在课前带着这三个导学性核心问题自学三角形的分类,就能通过自己画的具象的图形在头脑中抽象出锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,并且也能用自己的语言描述这些抽象的概念,从而促进学生数学空间观念的形成,进而提升学生的数学核心素养。
二、以辨析性问题,促数学核心素养
在课堂教学的过程中,通过一些辨析性的数学问题,学生在讨论和交流的过程中进行观察、对比、分析、综合和归纳,从而发现概念的本质属性,提升学生的数学核心素养。如,苏教版一年级下册《认识平面图形》一课,从学生上学期已经认识的长方形、正方体、圆柱这些几何形体入手,通过“印一印”这一活动让学生亲历从几何形体上剥离面,再抽象成平面图形“标准形”的探究过程。再通过“辨一辨”,长方体可以印出哪些图形?其他物体能印出哪些图形?学生体验从不同几何形体上可以剥离出不同的平面图形。通过“议一议”,立体图形和平面图形,有什么不同?这一辨析性问题,使学生在头脑中建立立體图形和平面图形的表象,并且自觉进行对比辨析,从而发展学生的空间观念,提升学生的数学核心素养。又如,苏教版三年级下册《认识分数》,认识单位“1”和平均分的份数是理解分数的重点。课中安排了四次辨析讨论活动:“为什么分的东西变多了,还写1/3?”“回顾两个1/3和两个1/4的图例,比一比,你发现了什么?”“观察12个桃的几分之一图,从中发现了什么?”“你还想到哪些分数?”四个问题引起层层深入的四次讨论,对问题的探索思考促发了学生不断刷新理解几分之一,逐步建构出分数的模型,也让学生的数学素养从理解分数的过程中长出一点来。
三、以反思性问题,促数学核心素养
在课堂结尾,一般要进行回顾反思,对一堂课的知识点进行反思建构,对一堂课中研究数学的方法进行梳理,从而迁移到其他学习中,提升学生的数学核心素养。如,苏教版五年级下册《和与积的奇偶性》,本节课是在教学自然数的特征,能将自然数按是否是2的倍数进行分类,形成偶数、奇数概念的基础上开展的规律探究活动。教材关注到学生数学基本活动经验的积累,通过列举求和——证明比较——发现推理——运用与提升为主体核心推进过程,引导学生在个案列举、数据分析、合理猜测、推理论证、拓展分析中不断提升学生在具体问题分析中对于数学思考、问题解决、情感态度上的综合应用,使学生能主动体会与应用数学思想,积累相应的数学活动经验。本课的知识展开结构:“任意两个数相加——任意多个数相加——任意多个数相乘”。最核心的是任意两个数相加的情况,它是学生后续学习活动与思维活动的基础。两个数相加的奇偶性的学习过程后,老师追问:刚才我们是怎样研究两个数相加的和的奇偶性的?引领学生初步建立了找规律的“找”中的方法结构模型,分类举例——猜想——验证——得出结论。帮助学生初步感知了和的奇偶性,渗透了和与积的奇偶性的规律的本质原因,起到了很好的引领作用。两个、三个、四个、五个数的和的奇偶性研究后,老师又追问:刚才是怎样研究和的奇偶性的?你准备怎样来研究积的奇偶性?学生将研究几个数和的奇偶性的方法结构模型,迁移到几个数积的奇偶性中,从而实现数学学习方法的建模,提升学生的数学核心素养。
所以,学生数学核心素养培养的主阵地在教学中。通过课前的导学性问题让学生理解概念的核心本质,通过课中的辨析性问题发展学生的各种思维品质,通过课尾的反思性问题帮助学生建构知识和学习方法,通过数学核心问题来逐步提升学生的数学核心素养。
【关键词】数学教学 核心素养
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2017)15-0160-01
数学核心素养是以数学课程教学为载体,基于数学学科的知识技能而形成的重要的思维品质和关键能力。6大数学核心素养,即数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。数学核心素养反映了数学的基本思想和学习数学的关键能力。数学抽象、逻辑推理、数学建模反映的是数学基本思想,是核心素养中最重要的数学思维品质。直观想象、数学运算、数据分析,可以理解为学习数学的关键能力和方法。作为教师要以课堂教学中的核心问题为切入口,提升学生的数学核心素养。
一、以导学性问题,促数学核心素养
在课前,可以提出一些核心的导学性问题,便于学生在自学的过程中把握数学概念的核心本质,从而提升学生的数学核心素养。如,苏教版四年级下册的《三角形的分类》,教材中引导学生根据角的特点对三角形进行分类:锐角三角形、直角三角形、钝角三角形。根据边的特点对三角形进行分类:一般三角形、等腰三角形、等边三角形。在课前可以设计研究学习的导学单,提出三个问题:1.如果将三角形按角进行分类,可以怎样分类?你能用图表示吗?2.为什么说“三个角都是锐角的三角形是锐角三角形”,而直角三角形却说“有一个角是直角”,钝角三角形说“有一个角是钝角”?3.如果将三角形按边进行分类,可以怎样分类?你能用图表示吗?学生在课前带着这三个导学性核心问题自学三角形的分类,就能通过自己画的具象的图形在头脑中抽象出锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,并且也能用自己的语言描述这些抽象的概念,从而促进学生数学空间观念的形成,进而提升学生的数学核心素养。
二、以辨析性问题,促数学核心素养
在课堂教学的过程中,通过一些辨析性的数学问题,学生在讨论和交流的过程中进行观察、对比、分析、综合和归纳,从而发现概念的本质属性,提升学生的数学核心素养。如,苏教版一年级下册《认识平面图形》一课,从学生上学期已经认识的长方形、正方体、圆柱这些几何形体入手,通过“印一印”这一活动让学生亲历从几何形体上剥离面,再抽象成平面图形“标准形”的探究过程。再通过“辨一辨”,长方体可以印出哪些图形?其他物体能印出哪些图形?学生体验从不同几何形体上可以剥离出不同的平面图形。通过“议一议”,立体图形和平面图形,有什么不同?这一辨析性问题,使学生在头脑中建立立體图形和平面图形的表象,并且自觉进行对比辨析,从而发展学生的空间观念,提升学生的数学核心素养。又如,苏教版三年级下册《认识分数》,认识单位“1”和平均分的份数是理解分数的重点。课中安排了四次辨析讨论活动:“为什么分的东西变多了,还写1/3?”“回顾两个1/3和两个1/4的图例,比一比,你发现了什么?”“观察12个桃的几分之一图,从中发现了什么?”“你还想到哪些分数?”四个问题引起层层深入的四次讨论,对问题的探索思考促发了学生不断刷新理解几分之一,逐步建构出分数的模型,也让学生的数学素养从理解分数的过程中长出一点来。
三、以反思性问题,促数学核心素养
在课堂结尾,一般要进行回顾反思,对一堂课的知识点进行反思建构,对一堂课中研究数学的方法进行梳理,从而迁移到其他学习中,提升学生的数学核心素养。如,苏教版五年级下册《和与积的奇偶性》,本节课是在教学自然数的特征,能将自然数按是否是2的倍数进行分类,形成偶数、奇数概念的基础上开展的规律探究活动。教材关注到学生数学基本活动经验的积累,通过列举求和——证明比较——发现推理——运用与提升为主体核心推进过程,引导学生在个案列举、数据分析、合理猜测、推理论证、拓展分析中不断提升学生在具体问题分析中对于数学思考、问题解决、情感态度上的综合应用,使学生能主动体会与应用数学思想,积累相应的数学活动经验。本课的知识展开结构:“任意两个数相加——任意多个数相加——任意多个数相乘”。最核心的是任意两个数相加的情况,它是学生后续学习活动与思维活动的基础。两个数相加的奇偶性的学习过程后,老师追问:刚才我们是怎样研究两个数相加的和的奇偶性的?引领学生初步建立了找规律的“找”中的方法结构模型,分类举例——猜想——验证——得出结论。帮助学生初步感知了和的奇偶性,渗透了和与积的奇偶性的规律的本质原因,起到了很好的引领作用。两个、三个、四个、五个数的和的奇偶性研究后,老师又追问:刚才是怎样研究和的奇偶性的?你准备怎样来研究积的奇偶性?学生将研究几个数和的奇偶性的方法结构模型,迁移到几个数积的奇偶性中,从而实现数学学习方法的建模,提升学生的数学核心素养。
所以,学生数学核心素养培养的主阵地在教学中。通过课前的导学性问题让学生理解概念的核心本质,通过课中的辨析性问题发展学生的各种思维品质,通过课尾的反思性问题帮助学生建构知识和学习方法,通过数学核心问题来逐步提升学生的数学核心素养。