论文部分内容阅读
为了提高滚动轴承故障诊断的准确性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与卷积神经网络(Convolution Neural Networks,CNN)的故障诊断方法。首先使用EEMD对信号进行分解,并根据相关系数以及峭度值选取适当的本征模态函数(Intrinsic Mode Function,IMF)进行信号重构。对重构信号进行一系列指标计算后使用卷积神经网络以及多种方法进行故障诊断。结果表明,所使用的方法能够有效地进行故障诊断