论文部分内容阅读
利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算法的收敛性。在合成数据集和图像数据集上,验证该增量算法的效率和精确度。