论文部分内容阅读
小学数学应用题是教学的重点,又是教学的难点,因此在总复习中它至关重要。应用题的系统复习有助于学生理解概念、掌握数量关系,培养和提高分析问题、解决问题的能力。现就结合我的教学实谈一谈对应用题的复习教学的体会。
一、强化基础训练,掌握数量关系
基本的数量关系是指加、减、乘、除法的基本应用,比如:求两个数量相差多少,用减法解答;求一個数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。任何一道复合应用题都是由几道有联系的一步应用题组合而成的。因此,基本的数量关系是解答应用题的基础。在复习时,我特意安排了一些补充条件的问题和练习,目的是强化学生的基础知识。使学生看到问题立刻想到解决问题所必需的两个条件;看到两个条件能迅速想到可以解决什么问题。在此基础上再出些有助于训练发散性思维的练习题。如给出两个条件:甲数是10,乙数是8,要求学生尽可能地多提出些问题。练习时,先要求学生提出用一步解答的问题,如 “甲数比乙数多多少”、“乙数比甲数少多少”、“乙数占甲数的几分之几”等。然后再要求学生提出用两步解答的问题,如“甲数比乙数多几分之几”、“乙数比甲数少几分之几”、“乙数占两数和的几分之几”等。对于常用的数量关系,复习时我还采用给名称让学生编题的练习形式。如已知单价和总价,编求数量的题目;已知路程和时间,编求速度的题目等。通过这种形式的训练,使学生进一步牢固掌握基本的数量关系。为解答较复杂的应用题打下良好基础。在编题训练的过程中,还要注意指导学生对数学术语的准确理解和运用。只有准确理解,才能正确运用。如增加、增加到、增加了,提高、提高到、提高了,扩大,缩小等。发现错误,及时纠正。对易混的术语,如减少了和减少到等要让学生区别清楚。
二、综合运用知识,拓宽解题思路
能够正确解答应用题,是学生能综合运用所学知识的具体表现。应用题的解答一般采用综合法和分析法。我们在复习时侧重教给分析法。例如:李师傅计划做820个零件,已经做了4天,平均每天做50个,其余的6天做完,平均每天要做多少个?
分析方法是从问题入手,寻找解决问题的条件。即①要求平均每天做多少个,必须知道余下的个数和工作的天数(6天)这两个条件。②要求余下多少个,就要知道计划生产多少个(820个)和已经生产了多少个。③要求已经生产了多少个,需要知道已经做的天数(4天)和平均每天做的个数(50个)。在复习过程中,我注重要求学生把分析思考的过程用语言表述出来。学生能说清楚,就证明他的思维是理顺的。既要重视学生的计算结果,更要重视学生表述的分析过程。
三、系统整理归纳,形成知识网络
在应用题复习中,一题多解是沟通知识之间内在联系的一种行之有效的练习形式。它不但有助于学生牢固地掌握数量关系,而且可以开阔解题思路,提高学生多角度地分析问题的能力。例如:一个修路队,原计划每天修80米,实际每天比原计划多修20%,结果用12.5天就完成任务。原计划多少天完成任务?可有下列解法:
1.80×(1+20%)×12.5÷8=15(天)
2.12.5×(1+20%)=15(天)
3.设计划用x天完成。
80x=80×(1+20%)×12.5 x=15
4.设原计划用x天完成。
80∶80×(1+20%)=12.5∶x
x=15
上述四种解法分别是按解一般应用题的思路、分数应用题的思路、方程的思路和用比例解的思路进行分析的。通过本题的复习,引导学生找出各知识点之间的联系,使学过的解应用题的各种知识得以融会贯通和综合应用,拓宽了学生的解题思路。
一、强化基础训练,掌握数量关系
基本的数量关系是指加、减、乘、除法的基本应用,比如:求两个数量相差多少,用减法解答;求一個数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。任何一道复合应用题都是由几道有联系的一步应用题组合而成的。因此,基本的数量关系是解答应用题的基础。在复习时,我特意安排了一些补充条件的问题和练习,目的是强化学生的基础知识。使学生看到问题立刻想到解决问题所必需的两个条件;看到两个条件能迅速想到可以解决什么问题。在此基础上再出些有助于训练发散性思维的练习题。如给出两个条件:甲数是10,乙数是8,要求学生尽可能地多提出些问题。练习时,先要求学生提出用一步解答的问题,如 “甲数比乙数多多少”、“乙数比甲数少多少”、“乙数占甲数的几分之几”等。然后再要求学生提出用两步解答的问题,如“甲数比乙数多几分之几”、“乙数比甲数少几分之几”、“乙数占两数和的几分之几”等。对于常用的数量关系,复习时我还采用给名称让学生编题的练习形式。如已知单价和总价,编求数量的题目;已知路程和时间,编求速度的题目等。通过这种形式的训练,使学生进一步牢固掌握基本的数量关系。为解答较复杂的应用题打下良好基础。在编题训练的过程中,还要注意指导学生对数学术语的准确理解和运用。只有准确理解,才能正确运用。如增加、增加到、增加了,提高、提高到、提高了,扩大,缩小等。发现错误,及时纠正。对易混的术语,如减少了和减少到等要让学生区别清楚。
二、综合运用知识,拓宽解题思路
能够正确解答应用题,是学生能综合运用所学知识的具体表现。应用题的解答一般采用综合法和分析法。我们在复习时侧重教给分析法。例如:李师傅计划做820个零件,已经做了4天,平均每天做50个,其余的6天做完,平均每天要做多少个?
分析方法是从问题入手,寻找解决问题的条件。即①要求平均每天做多少个,必须知道余下的个数和工作的天数(6天)这两个条件。②要求余下多少个,就要知道计划生产多少个(820个)和已经生产了多少个。③要求已经生产了多少个,需要知道已经做的天数(4天)和平均每天做的个数(50个)。在复习过程中,我注重要求学生把分析思考的过程用语言表述出来。学生能说清楚,就证明他的思维是理顺的。既要重视学生的计算结果,更要重视学生表述的分析过程。
三、系统整理归纳,形成知识网络
在应用题复习中,一题多解是沟通知识之间内在联系的一种行之有效的练习形式。它不但有助于学生牢固地掌握数量关系,而且可以开阔解题思路,提高学生多角度地分析问题的能力。例如:一个修路队,原计划每天修80米,实际每天比原计划多修20%,结果用12.5天就完成任务。原计划多少天完成任务?可有下列解法:
1.80×(1+20%)×12.5÷8=15(天)
2.12.5×(1+20%)=15(天)
3.设计划用x天完成。
80x=80×(1+20%)×12.5 x=15
4.设原计划用x天完成。
80∶80×(1+20%)=12.5∶x
x=15
上述四种解法分别是按解一般应用题的思路、分数应用题的思路、方程的思路和用比例解的思路进行分析的。通过本题的复习,引导学生找出各知识点之间的联系,使学过的解应用题的各种知识得以融会贯通和综合应用,拓宽了学生的解题思路。