论文部分内容阅读
在高三物理复习过程中,相对运动问题中的“共同速度”与“带动”问题中的共同速度,可以说是不少同学遇到的难点。作为一名高中物理爱好者,我下面就选择几道典型例题,谈谈自己的解题方法。
一、相对运动问题中的“共同速度”
甲、乙两质点速度随时间或其它因素变化而变化,从而使它们的相对速度發生变化,当相对速度为零时,甲、乙有共同速度。
(1)“撞车”问题。典型的叙述如下:甲火车以速度 1作匀速直线运动,突然发现正前方s米处有一列乙火车以速度 2( 2< 1)作同方向的匀速直线运动,就立即刹车,问甲火车的加速度应多大才不至撞车?
该题的 -t图像如图1所示,甲、乙两车的图线交点P的物理意义是该时刻甲、乙有共同速度。在共同速度出现时刻,系统应该有哪些特征伴随呢?如果此时刻甲、乙尚未碰撞,以后 甲< 乙,就不会撞车了,所以应有的特征是△ 1 2P的面积小于s。解题时抓住“临界”值,令S△ 1 2P=S,即可解得加速度的临界值a0,则a甲>a0为答案。
(2)追及问题。典型的叙述如下:汽车以速度 1作匀速直线运动,当它超过一辆摩托车时,摩托车即开始作加速度为a,初速为零的同方向的匀加速直线运动。问汽车与摩托车何时相距最远?最远距离为多少?
这问题从数学的角度出发,可以用二次函数△S= 1t- at2求极值的方法解决,但物理意义不够清楚。作出该题中两车的 -t图像,如图2所示,可以看出,两图线的交点P以左各时刻 汽> 摩,两车距离越来越远;P点以右各时刻 汽< 摩,两车距离不断减小。P点时刻两车有共同速度,对应的特征是两车相距最远。据此问题即可解决。
二、“带动”问题中的共同速度
所谓“带动”,指B的运动由A引起,是A拉着或推着B运动。根据带动原因的不同,可分几种情况:
(1)摩擦带动。经常遇到的问题为:质量为m、速度为 0的子弹打入静止在光滑水平面上质量为M的木块,并嵌在其内与木块一起沿原方向运动。这类问题的变型很多,例如一包货物从滑槽上滑出后,滑上平板小车,最后达到相对静止的问题就是摩擦带动问题。系统最后处于共同速度状态, 共= 。系统刚刚达到该状态时有何对应特征呢?令△l为m相对于M的位移,f为m与M间的相互作用力,系统有能量特征△Ek=f·△l= · m = Ek0,△Ek为动能损失。
(2)压力带动。例子如图3所示:A、B两物紧靠,静止在光滑水平面上,物C从光滑半圆弧槽右边顶端下滑,求A、B分离后A的速度以及以后C能上升的高度(A、B、C质量及槽半径已知)。C物下滑时对B物压力的水平分力带动B运动,B物又带动A物运动。该题中系统有两个共同速度:当C滑到B的槽底时,A、B有共同速度,该时刻对应的特征是A、B开始分离。当C物再次上升到“最高”点(该高度当然小于最初下滑时的高度)时,C、B两物有共同速度,这时的对应特征是C、B相对速度为零,C物不再沿B上升。
(3)拉力带动。性质实与压力带动同,以下题为例(图4所示):质量为M1的甲车以速度 0沿光滑水平面向静止的、质量是M2的乙车运动。乙车上用悬架悬挂一静止单摆,摆长为ι,摆球质量為m,悬架质量已计入乙车内。甲车与乙车发生碰撞后连在一起运动,求摆球能上升的最大高度。该题中,甲、乙碰后连在一起的瞬间摆线尚无明显偏离,甲、乙达共同速度,系统此时刻对应的特征是能量损失为△Ek= EK0
此后甲、乙通过摆线带动摆球m运动,最后在某瞬间三者有共同速度,此时系统对应的特征是m与两车无相对速度,m上升到最高点,摆线偏角最大。根据后来三者机械能守恒可以求出结果。此例中摆球为摆线拉力所带动。
一、相对运动问题中的“共同速度”
甲、乙两质点速度随时间或其它因素变化而变化,从而使它们的相对速度發生变化,当相对速度为零时,甲、乙有共同速度。
(1)“撞车”问题。典型的叙述如下:甲火车以速度 1作匀速直线运动,突然发现正前方s米处有一列乙火车以速度 2( 2< 1)作同方向的匀速直线运动,就立即刹车,问甲火车的加速度应多大才不至撞车?
该题的 -t图像如图1所示,甲、乙两车的图线交点P的物理意义是该时刻甲、乙有共同速度。在共同速度出现时刻,系统应该有哪些特征伴随呢?如果此时刻甲、乙尚未碰撞,以后 甲< 乙,就不会撞车了,所以应有的特征是△ 1 2P的面积小于s。解题时抓住“临界”值,令S△ 1 2P=S,即可解得加速度的临界值a0,则a甲>a0为答案。
(2)追及问题。典型的叙述如下:汽车以速度 1作匀速直线运动,当它超过一辆摩托车时,摩托车即开始作加速度为a,初速为零的同方向的匀加速直线运动。问汽车与摩托车何时相距最远?最远距离为多少?
这问题从数学的角度出发,可以用二次函数△S= 1t- at2求极值的方法解决,但物理意义不够清楚。作出该题中两车的 -t图像,如图2所示,可以看出,两图线的交点P以左各时刻 汽> 摩,两车距离越来越远;P点以右各时刻 汽< 摩,两车距离不断减小。P点时刻两车有共同速度,对应的特征是两车相距最远。据此问题即可解决。
二、“带动”问题中的共同速度
所谓“带动”,指B的运动由A引起,是A拉着或推着B运动。根据带动原因的不同,可分几种情况:
(1)摩擦带动。经常遇到的问题为:质量为m、速度为 0的子弹打入静止在光滑水平面上质量为M的木块,并嵌在其内与木块一起沿原方向运动。这类问题的变型很多,例如一包货物从滑槽上滑出后,滑上平板小车,最后达到相对静止的问题就是摩擦带动问题。系统最后处于共同速度状态, 共= 。系统刚刚达到该状态时有何对应特征呢?令△l为m相对于M的位移,f为m与M间的相互作用力,系统有能量特征△Ek=f·△l= · m = Ek0,△Ek为动能损失。
(2)压力带动。例子如图3所示:A、B两物紧靠,静止在光滑水平面上,物C从光滑半圆弧槽右边顶端下滑,求A、B分离后A的速度以及以后C能上升的高度(A、B、C质量及槽半径已知)。C物下滑时对B物压力的水平分力带动B运动,B物又带动A物运动。该题中系统有两个共同速度:当C滑到B的槽底时,A、B有共同速度,该时刻对应的特征是A、B开始分离。当C物再次上升到“最高”点(该高度当然小于最初下滑时的高度)时,C、B两物有共同速度,这时的对应特征是C、B相对速度为零,C物不再沿B上升。
(3)拉力带动。性质实与压力带动同,以下题为例(图4所示):质量为M1的甲车以速度 0沿光滑水平面向静止的、质量是M2的乙车运动。乙车上用悬架悬挂一静止单摆,摆长为ι,摆球质量為m,悬架质量已计入乙车内。甲车与乙车发生碰撞后连在一起运动,求摆球能上升的最大高度。该题中,甲、乙碰后连在一起的瞬间摆线尚无明显偏离,甲、乙达共同速度,系统此时刻对应的特征是能量损失为△Ek= EK0
此后甲、乙通过摆线带动摆球m运动,最后在某瞬间三者有共同速度,此时系统对应的特征是m与两车无相对速度,m上升到最高点,摆线偏角最大。根据后来三者机械能守恒可以求出结果。此例中摆球为摆线拉力所带动。