论文部分内容阅读
摘 要 为了获得苏云金芽胞杆菌(Bacillus thuringiensis, 简称Bt)解毒Cr(Ⅵ)的相关基因并进行功能分析,从Bt 407转座子随机突变体库筛选并获得了9株Cr(Ⅵ)还原能力突变株,测定了其转座子插入位点,并研究了表型变化。这些突变株的Cr(Ⅵ)还原能力比野生株极显著提高(p<0.01),其转座子插入位点均为编码假定的肽链内切酶yddH基因。研究结果表明,野生株与突变株的生长曲线没有显著差异,说明突变株Cr(Ⅵ)还原能力的极显著提高与菌种数量改变无关。突变株总铬含量基本保持不变,表明Bt 407主要是通过将Cr(Ⅵ)还原为Cr(Ⅲ)来解毒Cr(Ⅵ)。本研究为构建高效解毒Cr(Ⅵ)工程菌提供了新候选基因材料。
关键词 苏云金芽胞杆菌;转座子;肽链内切酶; Cr(VI);还原
中图分类号 Q939.9 文献标识码 A
Functional Analysis of Genes Controlling Detoxification of Cr(Ⅵ) in
Bacillus thuringeinsis with Transposon Mutagenesis
HUANG Tianpei1,ZHANG Jun1,KANG Rong1,LAI Xiaohua1,
PAN Jieru2,ZHANG Lingling1,3,GUAN Xiong1*
1 Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture
and Forestry University, Fuzhou,Fujian 350002, China
2 Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350004, China
3 China National Engineering Research Center of Juncao Technology, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, China
Abstract In order to analyze the functions of genes controlling detoxification of Cr(Ⅵ) in Bacillus thuringeinsis with transposon mutagenesis, the mutants with different Cr(Ⅵ) reduction capacity were obtained from a library of Bt 407 transposon random insertion mutants. The insertion sites and the phenotypes of the mutants were then determined. 9 mutants which Cr(Ⅵ)-reducing capacities were remarkably different(p<0.01) from Bt 407 were obtained. The flanking sequence of mini-Tn10 insertion in the mutants was sequenced and within putative endopeptidase yddH gene. The results showed that the growth curves of all strains were similar. This indicated that strain populations did not affect the Cr(Ⅵ) reduction capacities of the mutants. The observation that total Cr of Bt 407 and its 9 mutants were similar and waved among 50 mg/L suggested that they mainly detoxify Cr(Ⅵ) by reduction. Herein, the putative endopeptidase yddH gene might be a novel gene for construction of engineering strains detoxifying Cr(Ⅵ) with high efficiency.
Key words Bacillus thuringiensis;Transposon; Endopeptidase;Cr(Ⅵ);Reduction
doi 10.3969/j.issn.1000-2561.2014.04.019
铬是电镀等制造业的副产品,在环境中会积累,并可能影响土壤肥力和微生物活动,造成作物产量损失[1-3]。废水中的铬存在形式主要有Cr(Ⅲ)和Cr(Ⅵ)2种,其中, 以Cr(Ⅵ)的毒性最大, 约Cr(Ⅲ)的1 000倍[2]。把有毒性的Cr(Ⅵ)还原成Cr(Ⅲ),是处理含铬废水最常用的方法之一[4]。其中,细菌处理法越来越引起人们的重视[5]。研究已发现许多细菌在有氧/无氧条件下具有将Cr(Ⅵ)还原为Cr(Ⅲ)的能力[6-8]。大部分的细菌Cr(Ⅵ)还原为酶促反应[9]。在有氧条件下,Cr(Ⅵ)还原酶以内源电子、NADPH、NADH作为电子供体来还原Cr(Ⅵ)[10]。许多Cr(Ⅵ)还原酶随着科学的发展不断被鉴定,如硫辛酰脱氢酶、谷胱甘肽还原酶等。这些酶一般都具有NADH:黄素氧化还原酶活性,以Cr(Ⅵ)作为其电子受体,生成黄素半醌和Cr(Ⅴ)[11-12]。另外一类铬或醌专性的还原酶(ChrR、YieF和NfsA)可以将Cr(Ⅵ)还原为Cr(Ⅲ)[12-16]。 苏云金芽胞杆菌(Bacillus thuringiensis,Bt)是目前研究最为深入、应用最广泛的微生物杀虫剂之一。Sahin等[17]和周学永等[18]分别研究了Bt对Cr(Ⅵ)的动力学吸附过程。2010年,黄天培等 [19-20]证明了Bt菌株普遍具有将Cr(Ⅴ)还原为Cr(Ⅲ)的能力,明确了细胞色素氧化酶亚单位I可能参与还原Cr(Ⅵ)的调控。在此基础上,研究从Bt 407 mini-Tn10转座子随机突变体库获得了9株Cr(Ⅵ)还原能力极显著提高的突变株(p<0.01),测定了其转座子插入位点,并研究了其表型变化,为构建高效解毒Cr(Ⅵ)工程菌奠定了新候选基因的基础。
1 材料与方法
1.1 材料
3 讨论与结论
转座子作为一类可改造的分子工具,其探索已知基因的新功能和未知基因功能的强大能力随着功能基因组学研究展开得到人们的青昧。2008年,Branco等[24]将Tn5转座子随机突变载体pSUP5011转化苍白杆菌5bvl1,建立了一个容量为4 000的突变体库,鉴定了高度耐铬的苍白杆菌5bvl1中铬抗性基因的转座位点(TnOtChr),验证了其中的chrB、chrA、chrC和chrF基因的功能。mini-Tn10转座子在芽孢杆菌的功能基因组研究中应用非常广泛。如Ghelardi等[25]利用该mini-Tn10转座子pIC333发现了编码Bt鞭毛蛋白的fhlA基因。本研究从基于pIC333构建的Bt407突变体库中筛选出9株Cr(Ⅵ)还原能力极显著提高的突变株,根据Bt 407全基因组的预测注释[26]分析了转座子mini-Tn10插入位点侧翼序列,将插入位点均确认为假定的肽链内切酶yddH基因第1 009~1 017 bp的“GTACCTGTA”。已发现枯草芽孢杆菌(Bacillus subtilis)肽链内切酶YddH可水解细胞壁[27]。将Bt 407肽链内切酶YddH氨基酸序列进行BLASTP比较,发现其高度同源序列均注释为接合转移蛋白(conjugation protein),与枯草芽孢杆菌肽链内切酶YddH同源性很低。因此,该Bt 407基因是否具有肽链内切酶功能或接合转移蛋白功能需要进一步实验验证。已知在接合转移蛋白介导的接合转移作用下,蜡样芽胞杆菌组(Bacillus cereus sensu lato family)的细菌间可以进行基因库之间的交流及协同进化;Bt和蜡样芽胞杆菌(Bacillus cereus)可以在河水、土壤、食品、昆虫肠道中交换遗传物质;炭疽芽孢杆菌(Bacillus anthracis)毒素基因或整个毒素质粒可以接合转移到其他的芽孢杆菌,反之,其他细菌的基因或质粒也可以接合转移到炭疽芽孢杆菌。这导致人们对利用传统方法区分炭疽芽孢杆菌与蜡样芽胞杆菌组细菌正确性的担心[28]。
Bt是应用最广泛的微生物农药之一,也是作物土壤习居菌,对人无致病性,且能高效还原Cr(Ⅵ),是治理Cr(Ⅵ)污染的理想材料之一。本研究基于转座子技术发现了yddH的缺失可能极显著提高了Bt对Cr(Ⅵ)还原能力(p<0.01)。因此,转座子技术可为构建高效解毒Cr(Ⅵ)工程菌构建提供新候选基因资源。后续实验将利用该基因活性恢复突变体和超表达突变体来确认其对Cr(Ⅵ)还原的调控功能,获得高效解毒Cr(Ⅵ)工程菌,明确其是否具有肽链内切酶功能或接合转移蛋白功能。
参考文献
[1] Wani P A, Khan M S, Zaidi A. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil[J]. Biotechnol Lett, 2008, 30(1): 159-163.
[2] Elangovan R, Philip L. Performance evaluation of various bioreactors for the removal of Cr(Ⅵ)and organic matter from industrial effluent[J]. Biochem Eng J, 2009, 44(2-3): 174-186.
[3] Nkhalambayausi-Chirwa E M, Wang Y. Simultaneous chromium(Ⅵ)reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance[J]. Water Res, 2001, 35(8): 1 921-1 932.
[4] 刘 婉,李泽琴. 水中铬污染治理的研究进展[J]. 广东微量元素学, 2007, 14(9): 5-9.
[5] 徐衍忠, 秦绪娜, 刘祥红. 铬污染及其生态效应[J]. 环境科学与技术, 2002, 25(增刊): 89.
[6] Ishibashi Y, Cervantes C, Silver S. Chromium reduction in Pseudomonas putida[J]. Appl Environ Microbiol, 1990, 56(7):2 268-2 270.
[7] Wang P C, Mori T, Komori K, et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Appl Environ Microbiol, 1989, 55(7): 1 665-1 669. [8] Shen H, Wang Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456[J]. Appl Environ Microbiol, 1993, 59(11): 3 771-3 777.
[9] Ramirez-Diaz M I, Diaz-Perez C, Vargas E, et al. Mechanisms of bacterial resistance to chromium compounds[J]. Biometals, 2008, 21(3): 321-332.
[10] Barak Y, Ackerley D F, Dodge C J, et al. Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution[J]. Appl Environ Microbiol, 2006, 72(11): 7 074-7 082.
[11] Wang P C, Mori T, Toda K, et al. Membrane-associated chromate reductase activity from Enterobacter cloacae[J]. J Bacteriol, 1990, 172(3): 1 670-1 672.
[12] Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli[J]. Appl Environ Microbiol, 2004, 70(2): 873-882.
[13] Zenno S, Koike H, Kumar A N, et al. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase[J]. J Bacteriol,1996, 178(15): 4 508-4 514.
[14] Kwak Y H, Lee D S, Kim H B. Vibrio harveyi nitroreductase is also a chromate reductase[J]. Appl Environ Microbiol, 2003, 69(8): 4 390-4 395.
[15] Ackerley D F, Gonzalez C F, Keyhan M, et al. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environ Microbiol, 2004, 6(8): 851-860.
[16] Zhu W, Chai L, Ma Z, et al. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1[J]. Microbiol Res, 2008, 163(6): 616-623.
[17] Sahin Y, Oztürk A. Biosorption of chromium(Ⅵ) ions from aqueous solution by the bacterium Bacillus thuringiensis[J]. Process Biochem, 2005, 40(5): 1 895-1 901.
[18] 周学永, 高建保, 汪 威,等. 苏云金芽胞杆菌杀虫原粉对铬离子吸附热力学研究[J]. 农业环境科学学报, 2007, 26(4): 1 292-1 295.
[19] 黄天培, 张巧铃, 潘洁茹,等. 高效还原铬的苏云金芽胞杆菌菌株筛选[J]. 应用与环境生物学报, 2010, 16(6): 879-882.
[20] 黄天培, 张 君, 苏新华, 等. 苏云金芽胞杆菌还原Cr(Ⅵ)的转座子突变体库构建和分析[J]. 激光生物学报, 2013, 22(3):37-43.
[21] 孙长坡. 苏云金芽孢杆菌G03的芽孢形成相关基因对cry基因表达的影响[D]. 北京: 中国农业科学院, 2007.
[22] GB 7467-87. 水质六价铬的测定. 二苯碳酰二肼分光光度法[S].
[23] GB 7466-87. 水质总铬的测定[S].
[24] Branco R, Chung A P, Johnston T, et al. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(Ⅵ) and superoxide[J]. J Bacteriol, 2008, 190(21): 6 996-7 003.
[25] Ghelardi E, Celandroni F, Salvetti S, et al. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis[J]. J Bacteriol, 2002, 23(184): 6 424-6 433.
[26] Sheppard A E, Poehlein A, Rosenstiel P, et al. Complete genome sequence of Bacillus thuringiensis strain 407 Cry-[J]. Genome Announc, 2013, 1(1): e00158-12.
[27] Fukushima T, Kitajima T, Yamaguchi H, et al. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting n-acetylmuramidase and DL-endopeptidase activities[J]. J Biol Chem, 2008, 283(17): 11 117-11 125.
[28] Yuan Y, Zheng D, Hu X, et al. Conjugative transfer of insecticidal plasmid pHT73 from Bacillus thuringiensis to B. anthracis and compatibility of this plasmid with pXO1 and pXO2[J]. Appl Environ Microbiol, 2010, 76(2): 468-473.
关键词 苏云金芽胞杆菌;转座子;肽链内切酶; Cr(VI);还原
中图分类号 Q939.9 文献标识码 A
Functional Analysis of Genes Controlling Detoxification of Cr(Ⅵ) in
Bacillus thuringeinsis with Transposon Mutagenesis
HUANG Tianpei1,ZHANG Jun1,KANG Rong1,LAI Xiaohua1,
PAN Jieru2,ZHANG Lingling1,3,GUAN Xiong1*
1 Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture
and Forestry University, Fuzhou,Fujian 350002, China
2 Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350004, China
3 China National Engineering Research Center of Juncao Technology, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, China
Abstract In order to analyze the functions of genes controlling detoxification of Cr(Ⅵ) in Bacillus thuringeinsis with transposon mutagenesis, the mutants with different Cr(Ⅵ) reduction capacity were obtained from a library of Bt 407 transposon random insertion mutants. The insertion sites and the phenotypes of the mutants were then determined. 9 mutants which Cr(Ⅵ)-reducing capacities were remarkably different(p<0.01) from Bt 407 were obtained. The flanking sequence of mini-Tn10 insertion in the mutants was sequenced and within putative endopeptidase yddH gene. The results showed that the growth curves of all strains were similar. This indicated that strain populations did not affect the Cr(Ⅵ) reduction capacities of the mutants. The observation that total Cr of Bt 407 and its 9 mutants were similar and waved among 50 mg/L suggested that they mainly detoxify Cr(Ⅵ) by reduction. Herein, the putative endopeptidase yddH gene might be a novel gene for construction of engineering strains detoxifying Cr(Ⅵ) with high efficiency.
Key words Bacillus thuringiensis;Transposon; Endopeptidase;Cr(Ⅵ);Reduction
doi 10.3969/j.issn.1000-2561.2014.04.019
铬是电镀等制造业的副产品,在环境中会积累,并可能影响土壤肥力和微生物活动,造成作物产量损失[1-3]。废水中的铬存在形式主要有Cr(Ⅲ)和Cr(Ⅵ)2种,其中, 以Cr(Ⅵ)的毒性最大, 约Cr(Ⅲ)的1 000倍[2]。把有毒性的Cr(Ⅵ)还原成Cr(Ⅲ),是处理含铬废水最常用的方法之一[4]。其中,细菌处理法越来越引起人们的重视[5]。研究已发现许多细菌在有氧/无氧条件下具有将Cr(Ⅵ)还原为Cr(Ⅲ)的能力[6-8]。大部分的细菌Cr(Ⅵ)还原为酶促反应[9]。在有氧条件下,Cr(Ⅵ)还原酶以内源电子、NADPH、NADH作为电子供体来还原Cr(Ⅵ)[10]。许多Cr(Ⅵ)还原酶随着科学的发展不断被鉴定,如硫辛酰脱氢酶、谷胱甘肽还原酶等。这些酶一般都具有NADH:黄素氧化还原酶活性,以Cr(Ⅵ)作为其电子受体,生成黄素半醌和Cr(Ⅴ)[11-12]。另外一类铬或醌专性的还原酶(ChrR、YieF和NfsA)可以将Cr(Ⅵ)还原为Cr(Ⅲ)[12-16]。 苏云金芽胞杆菌(Bacillus thuringiensis,Bt)是目前研究最为深入、应用最广泛的微生物杀虫剂之一。Sahin等[17]和周学永等[18]分别研究了Bt对Cr(Ⅵ)的动力学吸附过程。2010年,黄天培等 [19-20]证明了Bt菌株普遍具有将Cr(Ⅴ)还原为Cr(Ⅲ)的能力,明确了细胞色素氧化酶亚单位I可能参与还原Cr(Ⅵ)的调控。在此基础上,研究从Bt 407 mini-Tn10转座子随机突变体库获得了9株Cr(Ⅵ)还原能力极显著提高的突变株(p<0.01),测定了其转座子插入位点,并研究了其表型变化,为构建高效解毒Cr(Ⅵ)工程菌奠定了新候选基因的基础。
1 材料与方法
1.1 材料
3 讨论与结论
转座子作为一类可改造的分子工具,其探索已知基因的新功能和未知基因功能的强大能力随着功能基因组学研究展开得到人们的青昧。2008年,Branco等[24]将Tn5转座子随机突变载体pSUP5011转化苍白杆菌5bvl1,建立了一个容量为4 000的突变体库,鉴定了高度耐铬的苍白杆菌5bvl1中铬抗性基因的转座位点(TnOtChr),验证了其中的chrB、chrA、chrC和chrF基因的功能。mini-Tn10转座子在芽孢杆菌的功能基因组研究中应用非常广泛。如Ghelardi等[25]利用该mini-Tn10转座子pIC333发现了编码Bt鞭毛蛋白的fhlA基因。本研究从基于pIC333构建的Bt407突变体库中筛选出9株Cr(Ⅵ)还原能力极显著提高的突变株,根据Bt 407全基因组的预测注释[26]分析了转座子mini-Tn10插入位点侧翼序列,将插入位点均确认为假定的肽链内切酶yddH基因第1 009~1 017 bp的“GTACCTGTA”。已发现枯草芽孢杆菌(Bacillus subtilis)肽链内切酶YddH可水解细胞壁[27]。将Bt 407肽链内切酶YddH氨基酸序列进行BLASTP比较,发现其高度同源序列均注释为接合转移蛋白(conjugation protein),与枯草芽孢杆菌肽链内切酶YddH同源性很低。因此,该Bt 407基因是否具有肽链内切酶功能或接合转移蛋白功能需要进一步实验验证。已知在接合转移蛋白介导的接合转移作用下,蜡样芽胞杆菌组(Bacillus cereus sensu lato family)的细菌间可以进行基因库之间的交流及协同进化;Bt和蜡样芽胞杆菌(Bacillus cereus)可以在河水、土壤、食品、昆虫肠道中交换遗传物质;炭疽芽孢杆菌(Bacillus anthracis)毒素基因或整个毒素质粒可以接合转移到其他的芽孢杆菌,反之,其他细菌的基因或质粒也可以接合转移到炭疽芽孢杆菌。这导致人们对利用传统方法区分炭疽芽孢杆菌与蜡样芽胞杆菌组细菌正确性的担心[28]。
Bt是应用最广泛的微生物农药之一,也是作物土壤习居菌,对人无致病性,且能高效还原Cr(Ⅵ),是治理Cr(Ⅵ)污染的理想材料之一。本研究基于转座子技术发现了yddH的缺失可能极显著提高了Bt对Cr(Ⅵ)还原能力(p<0.01)。因此,转座子技术可为构建高效解毒Cr(Ⅵ)工程菌构建提供新候选基因资源。后续实验将利用该基因活性恢复突变体和超表达突变体来确认其对Cr(Ⅵ)还原的调控功能,获得高效解毒Cr(Ⅵ)工程菌,明确其是否具有肽链内切酶功能或接合转移蛋白功能。
参考文献
[1] Wani P A, Khan M S, Zaidi A. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil[J]. Biotechnol Lett, 2008, 30(1): 159-163.
[2] Elangovan R, Philip L. Performance evaluation of various bioreactors for the removal of Cr(Ⅵ)and organic matter from industrial effluent[J]. Biochem Eng J, 2009, 44(2-3): 174-186.
[3] Nkhalambayausi-Chirwa E M, Wang Y. Simultaneous chromium(Ⅵ)reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance[J]. Water Res, 2001, 35(8): 1 921-1 932.
[4] 刘 婉,李泽琴. 水中铬污染治理的研究进展[J]. 广东微量元素学, 2007, 14(9): 5-9.
[5] 徐衍忠, 秦绪娜, 刘祥红. 铬污染及其生态效应[J]. 环境科学与技术, 2002, 25(增刊): 89.
[6] Ishibashi Y, Cervantes C, Silver S. Chromium reduction in Pseudomonas putida[J]. Appl Environ Microbiol, 1990, 56(7):2 268-2 270.
[7] Wang P C, Mori T, Komori K, et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Appl Environ Microbiol, 1989, 55(7): 1 665-1 669. [8] Shen H, Wang Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456[J]. Appl Environ Microbiol, 1993, 59(11): 3 771-3 777.
[9] Ramirez-Diaz M I, Diaz-Perez C, Vargas E, et al. Mechanisms of bacterial resistance to chromium compounds[J]. Biometals, 2008, 21(3): 321-332.
[10] Barak Y, Ackerley D F, Dodge C J, et al. Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution[J]. Appl Environ Microbiol, 2006, 72(11): 7 074-7 082.
[11] Wang P C, Mori T, Toda K, et al. Membrane-associated chromate reductase activity from Enterobacter cloacae[J]. J Bacteriol, 1990, 172(3): 1 670-1 672.
[12] Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli[J]. Appl Environ Microbiol, 2004, 70(2): 873-882.
[13] Zenno S, Koike H, Kumar A N, et al. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase[J]. J Bacteriol,1996, 178(15): 4 508-4 514.
[14] Kwak Y H, Lee D S, Kim H B. Vibrio harveyi nitroreductase is also a chromate reductase[J]. Appl Environ Microbiol, 2003, 69(8): 4 390-4 395.
[15] Ackerley D F, Gonzalez C F, Keyhan M, et al. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environ Microbiol, 2004, 6(8): 851-860.
[16] Zhu W, Chai L, Ma Z, et al. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1[J]. Microbiol Res, 2008, 163(6): 616-623.
[17] Sahin Y, Oztürk A. Biosorption of chromium(Ⅵ) ions from aqueous solution by the bacterium Bacillus thuringiensis[J]. Process Biochem, 2005, 40(5): 1 895-1 901.
[18] 周学永, 高建保, 汪 威,等. 苏云金芽胞杆菌杀虫原粉对铬离子吸附热力学研究[J]. 农业环境科学学报, 2007, 26(4): 1 292-1 295.
[19] 黄天培, 张巧铃, 潘洁茹,等. 高效还原铬的苏云金芽胞杆菌菌株筛选[J]. 应用与环境生物学报, 2010, 16(6): 879-882.
[20] 黄天培, 张 君, 苏新华, 等. 苏云金芽胞杆菌还原Cr(Ⅵ)的转座子突变体库构建和分析[J]. 激光生物学报, 2013, 22(3):37-43.
[21] 孙长坡. 苏云金芽孢杆菌G03的芽孢形成相关基因对cry基因表达的影响[D]. 北京: 中国农业科学院, 2007.
[22] GB 7467-87. 水质六价铬的测定. 二苯碳酰二肼分光光度法[S].
[23] GB 7466-87. 水质总铬的测定[S].
[24] Branco R, Chung A P, Johnston T, et al. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(Ⅵ) and superoxide[J]. J Bacteriol, 2008, 190(21): 6 996-7 003.
[25] Ghelardi E, Celandroni F, Salvetti S, et al. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis[J]. J Bacteriol, 2002, 23(184): 6 424-6 433.
[26] Sheppard A E, Poehlein A, Rosenstiel P, et al. Complete genome sequence of Bacillus thuringiensis strain 407 Cry-[J]. Genome Announc, 2013, 1(1): e00158-12.
[27] Fukushima T, Kitajima T, Yamaguchi H, et al. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting n-acetylmuramidase and DL-endopeptidase activities[J]. J Biol Chem, 2008, 283(17): 11 117-11 125.
[28] Yuan Y, Zheng D, Hu X, et al. Conjugative transfer of insecticidal plasmid pHT73 from Bacillus thuringiensis to B. anthracis and compatibility of this plasmid with pXO1 and pXO2[J]. Appl Environ Microbiol, 2010, 76(2): 468-473.