论文部分内容阅读
“找规律”是苏教版国标本四年级上册的教学内容。“找规律”的教学要求是“重找会用”,教学重点在“找”上,而不仅仅是规律的“应用”。但在多次听课后,笔者发现大多数教师按首尾不同、首尾相同、围成一圈的三种情况逐一引导学生寻找其中的规律。在教学新课及其单项练习时,学生都能听懂教师所讲授的知识,作业正确率也很高。但在综合练习时,有些学生就经常搞不清是用原来的数 1还是-1,原因就在于虽然教师帮学生总结了三个规律,却没有紧紧抓住知识间的内在联系,没有把教学重点落在规律的“应用”上。
笔者在2011年10月底听了姜振霞老师执教的《找规律》这节课,觉得既有创意又有实效。教师引导学生先感知“对应”思想,然后巧妙运用“对应”的数学思想方法轻松地解决了问题。现将有关教学案例简介如下。
一、案例分析
(一)片断一
教者先创设富有童趣的小白兔采蘑菇的情境,然后画面定格为:
小兔 蘑菇 小兔 蘑菇 小兔 蘑菇
教师问:“如果接着排下去,会怎么样?”
学生回答:“小兔 蘑菇 小兔 蘑菇 小兔 蘑菇……”
教师在“创境揭题”这个环节中,让学生把“小兔和蘑菇”接着排下去,使学生初步感知了“一一间隔排列”的形式,为教学“一一对应”的知识做好了铺垫。
(二)片断二
1.出示图片:□△□△□△□△
教师问:“正方形、三角形的个数有什么特点?”
学生答道:“正方形、三角形的个数一样多,我把每个正方形和每个三角形分为一组,共分四组。”
教师趁机引导:“也就是把第一个三角形对着第一个正方形,第二个三角形对着第二个正方形,就这样直到最后一个三角形对着最后一个正方形。所以,正方形、三角形的个数一样多。”
2.出示图片:□△□△□△□△□
教师问:“这里的正方形、三角形的个数怎么样?”然后,一边指着图片,一边引导学生:“一个三角形对着一个正方形,一个三角形对着一个正方形,最后一个正方形呢?它很孤单,没有三角形与它做朋友,正方形比三角形多一个。”这时,教师再总结:“用一个对着一个的方法进行比较,叫‘一一对应’。”
(三)片断三
教师通过问:“为什么都是一一间隔地排列?”来引导学生进行分组讨论和交流,学生通过摆圆片、小棒等学具,来验证自己的发现和结论。经历了“感受对应——发现规律——验证规律”的过程,学生基本掌握了对应的数学思想方法,体会到了它的作用和运用它的乐趣。
二、反思
1.善于挖掘数学思想方法
数学思想方法是数学知识的精髓,也是把知识转化为能力的桥梁。一个充满教育智慧的教师,不仅要教给学生知识,还要教给学生方法,让学生学会思考。
2.善于提炼数学思想方法
在探究规律时,教师不能只满足于学生用画图方法来解答题目,而要精心设置认知冲突,促使学生去寻找两种物体之间的新关系,使学生的思维逐渐从形象思维向抽象逻辑思维过渡。
3.善于运用数学思想方法
在综合练习时,教师需要不断地进行变式训练,在实际运用中把“对应”这一思想“植入”学生的头脑。
新课程标准下的小学数学比以往更加重视数学思想方法的蕴含,教师在平时的教学中也应该及时地提炼、归纳和概括数学思想,合理地渗透数学思想方法,适时引导学生灵活地运用数学思想方法来解决数学问题,让数学思想方法逐步深入人心,最终内化为学生的数学素养。
(作者单位:江苏省宝应县叶挺桥小学)
笔者在2011年10月底听了姜振霞老师执教的《找规律》这节课,觉得既有创意又有实效。教师引导学生先感知“对应”思想,然后巧妙运用“对应”的数学思想方法轻松地解决了问题。现将有关教学案例简介如下。
一、案例分析
(一)片断一
教者先创设富有童趣的小白兔采蘑菇的情境,然后画面定格为:
小兔 蘑菇 小兔 蘑菇 小兔 蘑菇
教师问:“如果接着排下去,会怎么样?”
学生回答:“小兔 蘑菇 小兔 蘑菇 小兔 蘑菇……”
教师在“创境揭题”这个环节中,让学生把“小兔和蘑菇”接着排下去,使学生初步感知了“一一间隔排列”的形式,为教学“一一对应”的知识做好了铺垫。
(二)片断二
1.出示图片:□△□△□△□△
教师问:“正方形、三角形的个数有什么特点?”
学生答道:“正方形、三角形的个数一样多,我把每个正方形和每个三角形分为一组,共分四组。”
教师趁机引导:“也就是把第一个三角形对着第一个正方形,第二个三角形对着第二个正方形,就这样直到最后一个三角形对着最后一个正方形。所以,正方形、三角形的个数一样多。”
2.出示图片:□△□△□△□△□
教师问:“这里的正方形、三角形的个数怎么样?”然后,一边指着图片,一边引导学生:“一个三角形对着一个正方形,一个三角形对着一个正方形,最后一个正方形呢?它很孤单,没有三角形与它做朋友,正方形比三角形多一个。”这时,教师再总结:“用一个对着一个的方法进行比较,叫‘一一对应’。”
(三)片断三
教师通过问:“为什么都是一一间隔地排列?”来引导学生进行分组讨论和交流,学生通过摆圆片、小棒等学具,来验证自己的发现和结论。经历了“感受对应——发现规律——验证规律”的过程,学生基本掌握了对应的数学思想方法,体会到了它的作用和运用它的乐趣。
二、反思
1.善于挖掘数学思想方法
数学思想方法是数学知识的精髓,也是把知识转化为能力的桥梁。一个充满教育智慧的教师,不仅要教给学生知识,还要教给学生方法,让学生学会思考。
2.善于提炼数学思想方法
在探究规律时,教师不能只满足于学生用画图方法来解答题目,而要精心设置认知冲突,促使学生去寻找两种物体之间的新关系,使学生的思维逐渐从形象思维向抽象逻辑思维过渡。
3.善于运用数学思想方法
在综合练习时,教师需要不断地进行变式训练,在实际运用中把“对应”这一思想“植入”学生的头脑。
新课程标准下的小学数学比以往更加重视数学思想方法的蕴含,教师在平时的教学中也应该及时地提炼、归纳和概括数学思想,合理地渗透数学思想方法,适时引导学生灵活地运用数学思想方法来解决数学问题,让数学思想方法逐步深入人心,最终内化为学生的数学素养。
(作者单位:江苏省宝应县叶挺桥小学)